分析 (1)作OH,DN分別垂直DC,AB交于H,N,連結(jié)OD,求出OH,又在直角△AND中,進(jìn)一步求出AD,從而求出梯形ABCD的周長y與x間的函數(shù)解析式,根據(jù)AD>0,AN>0,CD>0可求出定義域;
(2)利用二次函數(shù)在給定區(qū)間上求出最值的知識(shí)可求出函數(shù)的最大值.
解答 解:(1)作OH,DN分別垂直DC,AB交于H,N,
連結(jié)OD.由圓的性質(zhì),H是中點(diǎn),設(shè)OH=h,
h=$\sqrt{O{D}^{2}-D{H}^{2}}=\sqrt{4-{x}^{2}}$.
又在直角△AND中,AD=$\sqrt{A{N}^{2}+D{N}^{2}}=\sqrt{(2-x)^{2}+(4-{x}^{2})}$=$\sqrt{8-4x}$=2$\sqrt{2-x}$,
∴y=f(x)=AB+2AD+DC=4+2x+4$\sqrt{2-x}$,其定義域是(0,2);
(2)令t=$\sqrt{2-x}$,則t∈(0,$\sqrt{2}$),且x=2-t2,
∴y=4+2•(2-t2)+4t=-2(t-1)2+10,
當(dāng)t=1,即x=1時(shí),y的最大值是10.
點(diǎn)評(píng) 本題考查了函數(shù)的最值及其幾何意義,考查了二次函數(shù)在解決實(shí)際問題中求解最值的常用的方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com