18.函數(shù)f(x)=$\frac{bx}{2-3x}$,若方程f(x)=-2x有兩個相等的實根,則函數(shù)f(x)的解析式為f(x)=$\frac{-4x}{2-3x}$.

分析 化簡f(x)=-2x為一元二次方程,根據(jù)根的情況解出b.

解答 解:∵方程f(x)=-2x有兩個相等的實根,即6x2-(4+b)x=0有兩個相等的實根,
∴4+b=0,即b=-4.
∴f(x)=$\frac{-4x}{2-3x}$.
故答案為:$\frac{-4x}{2-3x}$.

點評 本題考查了函數(shù)零點個數(shù)與系數(shù)的關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.如圖表示的是求首項為-41,公差為2的等差數(shù)列前n項和的最小值的程序框圖,如果?②中填a=a+2,則①?可填寫a>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.過圓外一點P作圓的兩條切線和一條割線,切點為A,B,所作割線交圓于C,D兩點,C在P,D之間,在弦CD上取一點Q,使∠DAQ=∠PBC.求證:∠DBQ=∠PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點($\frac{3}{2}$,1),一個焦點是F(0,-1)
(1)求橢圓C的方程;
(2)設橢圓C與y軸的兩個交點為A1,A2,點P在直線y=a2上,直線PA1,PA2分別與橢圓C交于M,N兩點.試問:當點Q在直線y=a2上運動時,直線MN是否恒過定點Q?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.等比數(shù)列{an}滿足a1=1,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{3}}$成等差數(shù)列,則數(shù)列{an}的前10項和為(  )
A.10B.20C.256D.510

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}滿足a1=3,an=-an-1-2n+1,在a26,a27,a29,a29,a30中,最大的一項是(  )
A.a26B.a27C.a28D.a29
E.a30         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,有點O,O′和△A′B′C′,滿足下列條件:$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{O{{\;}^{'}A}^{'}}$=-$\overrightarrow{a}$,$\overrightarrow{O{{\;}^{'}B}^{'}}$=-$\overrightarrow$,O′C′=-$\overrightarrow{c}$,求證:△ABC≌△A′B′C′.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在?ABCD中,已知$\overrightarrow{AC}$=(-4,2),$\overrightarrow{BD}$=(2,-6),那么|2$\overrightarrow{AB}$+$\overrightarrow{AD}$|=( 。
A.5$\sqrt{5}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.$\sqrt{85}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=3sin($\frac{x}{4}$+$\frac{π}{6}$)(x∈R)的最小正周期(  )
A.B.C.D.π

查看答案和解析>>

同步練習冊答案