5.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.16-πB.8+πC.16+πD.8-π

分析 由三視圖可知幾何體為正方體切去兩個(gè)圓柱的$\frac{1}{4}$,故可使用作差法求體積.

解答 解:由三視圖可知幾何體為正方體切去兩個(gè)圓柱的$\frac{1}{4}$,正方體的棱長為2,圓柱的高為2,底面半徑為1.
所以幾何體的體積V=23-$\frac{1}{4}×π×{1}^{2}×2×2$=8-π.
故選D.

點(diǎn)評(píng) 本題考查了空間幾何體的三視圖和結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.△AOB為等邊三角形,OA=1,OC為AB的高,點(diǎn)P在射線OC上,則$\overrightarrow{AP}•\overrightarrow{OP}$的最小值為( 。
A.-$\frac{1}{4}$B.-$\frac{1}{8}$C.-$\frac{\sqrt{3}}{8}$D.-$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.甲罐中有5個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球,先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機(jī)取出一球,以B表示由乙罐取出的球是紅球的事件;則下列結(jié)論中正確的是:①②⑤.
①P(B)=$\frac{9}{22}$;②P(B|A1)=$\frac{5}{11}$;③事件B與事件A1相互獨(dú)立;④P(B)的值不能確定,因?yàn)樗cA1,A2和A3中哪一個(gè)發(fā)生有關(guān);⑤事件A1,A2和A3兩兩互斥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x•(lnx-2)+$\frac{1}{2}$x2,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+2a|+|x-$\frac{1}{{a}^{2}}$|.
(1)當(dāng)a=1時(shí).求不等式f(x)≤9的解集:
(2)若不等式f(x)≥m對(duì)任意實(shí)數(shù)x和任意正實(shí)數(shù)a恒成立.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)$\overrightarrow{a}$=(x,3),$\overrightarrow$=(2,-1),根據(jù)下列條件求x的取值范圍.
(1)$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
(2)$\overrightarrow{a}$與$\overrightarrow$的夾角為直角;
(3)$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某一段公路限速70公里/小時(shí),現(xiàn)抽取400輛通過這一段公路的汽車的時(shí)速,其頻率分布直方圖如圖所示,則這400輛汽車中在該路段超速的有80輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若過點(diǎn)P(a,b)(b≠a3-3a)可作曲線f(x)=x3-3x的切線恰有兩條,則(a-1)2+(b-2)2的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\sqrt{{x}^{2}}$是( 。
A.偶函數(shù)B.奇函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案