精英家教網 > 高中數學 > 題目詳情
13.已知α和β均為銳角,且sinα=$\frac{4}{5}$,cosβ=$\frac{12}{13}$.
(1)求sin(α+β)的值;
(2)求tan(α-β)的值.

分析 (1)由條件利用同角三角函數的基本關系求得 cosα 和sinβ 的值,兩角的正弦公式求得 sin(α+β)的值.
(2)由(1)求得tanα 和tanβ 的值,再利用兩角差的正切公式求得tan(α-β)的值.

解答 解:(1)∵已知α和β均為銳角,且sinα=$\frac{4}{5}$,cosβ=$\frac{12}{13}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{3}{5}$,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{5}{13}$,
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{4}{5}•\frac{12}{13}$+$\frac{3}{5}•\frac{5}{13}$=$\frac{63}{65}$.
(2)由(1)可得tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$,tanβ=$\frac{sinβ}{cosβ}$=$\frac{5}{12}$,
∴tan(α-β)=$\frac{tanα-tanβ}{1+tanα•tanβ}$=$\frac{\frac{4}{3}-\frac{5}{12}}{1+\frac{4}{3}•\frac{5}{12}}$=$\frac{33}{56}$.

點評 本題主要考查同角三角函數的基本關系,兩角差的正切公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

3.(1)設a,b,c均為正數,求證:$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$中至少有一個不小于2;
(2)設a>0,b>0,a+b=1,試用分析法證明$\sqrt{1+2a}+\sqrt{1+2b}≤2\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數$f(x)={log_2}({x^2}-x)$,g(x)=log2(2x-2).
(1)求f(x)的定義域;
(2)求不等式f(x)>g(x)的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知復數z=1-i,則$\frac{{{z^2}-2z}}{z-1}$=( 。
A.$\frac{i}{2}$B.-$\frac{i}{2}$C.2iD.-2i

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知θ為第四象限,sinθ=-$\frac{\sqrt{6}}{3}$,則tanθ=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.兩向量$\overrightarrow{AB}=(4,-3),\overrightarrow{CD}=(-5,-12)$,則$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影為( 。
A.(-1,-15)B.(-20,36)C.$\frac{16}{13}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知函數$f(x)=\sqrt{3}sinxcosx+{cos^2}x$.
(Ⅰ)求f(x)的最小正周期和單調增區(qū)間;
(Ⅱ)求f(x)在區(qū)間$[-\frac{π}{2},0]$上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知點A(-1,-6),B(2,-2),則向量$\overrightarrow{AB}$的模|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若函數f(x)=loga(x3-2x)(a>0且a≠1)在區(qū)間(-$\sqrt{2}$,-1)內恒有f(x)>0,則f(x)的單調遞減區(qū)間為( 。
A.(-∞,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞)D.(-$\frac{{\sqrt{6}}}{3}$,$\frac{{\sqrt{6}}}{3}$)

查看答案和解析>>

同步練習冊答案