1.Sn是數(shù)列{an}的前n項和log2Sn=n(n=1,2,3,…),那么數(shù)列{an}( 。
A.是公比為2的等比數(shù)列B.是公差為2的等差數(shù)列
C.是公比為$\frac{1}{2}$的等比數(shù)列D.既非等差數(shù)列又非等比數(shù)列

分析 化對數(shù)式為指數(shù)式得到${S}_{n}={2}^{n}$,進(jìn)一步求出數(shù)列的通項公式,再由等比數(shù)列的定義得答案.

解答 解:由log2Sn=n,得${S}_{n}={2}^{n}$,
∴a1=S1=2,
當(dāng)n≥2時,${a}_{n}={S}_{n}-{S}_{n-1}={2}^{n}-{2}^{n-1}={2}^{n-1}$.
驗證n=1適合上式,
∴${a}_{n}={2}^{n-1}$,
則$\frac{{a}_{n+1}}{{a}_{n}}=\frac{{2}^{n}}{{2}^{n-1}}=2$(常數(shù)).
∴數(shù)列{an}是公比為2的等比數(shù)列.
故選:A.

點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查對數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.使sinx>cosx成立的x的一個變化區(qū)間是( 。
A.(-π,-$\frac{3π}{4}$)B.(-$\frac{3π}{4}$,0)C.(-$\frac{π}{4}$,$\frac{π}{4}$)D.($\frac{π}{2}$,$\frac{3π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓C:x2+$\frac{{y}^{2}}{15}$=1,過C任意一點M作與直線l0:x+y-6=0夾角為30°的直線l,l交l0于點P,則|MP|的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=1.
(1)求|$\overrightarrow{a}$+$\overrightarrow$|和|$\overrightarrow{a}$-$\overrightarrow$|的值;
(2)求兩向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知定義在R上的函數(shù)f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+2}$(a為實常數(shù))是奇函數(shù)g(x)=2(x-x2).
(Ⅰ)求a的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對任意的t∈[-1,4],不等式f(g(t)-1)+f(8t+m)<0(m為實常數(shù))都成立,求m的取值范圍.
(Ⅲ)記F1(x)=f(x)+x2-$\frac{1}{{2}^{x}+1}$+$\frac{1}{2}$,F(xiàn)2(x)=g(x),F(xiàn)3(x)=$\frac{1}{3}$|sin2πx|,b1=$\frac{i}{100}$,i=0,1,2,…,100,若Mk=|Fk(b1)-Fk(b0)|+|Fk(b2)-Fk(b1)|+…+|Fk(b100)-Fk(b99)|,k=1,2,3,試比較M1,M2,M3的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點P1(x1,y1)和P2(x2,y2),P是直線P1P2上一點,且P1P=-2PP2,則P點坐標(biāo)為(-x1+2x2,-y1+2y2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=kx2+bx不恒等于0,當(dāng)k=0時,函數(shù)f(x)為奇函數(shù);當(dāng)b=0時,函數(shù)f(x)為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=$\frac{1}{2}$x與y=||x-a|-1|的圖象有三個公共點,則a=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.令函數(shù)f(x)=x2+ax+a-$\frac{3}{a}$(a≠0)且-1≤x≤1.
(1)當(dāng)a=1時,求f(x)的取值范圍;
(2)對任意實數(shù)x,在-1≤x≤1內(nèi)始終有f(x)≤0,求a的取值范圍;
(3)當(dāng)a≥2時,有實數(shù)x使得f(x)≤0.求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案