20.在△ABC中,若A=120°,AB=5,BC=7,則sinB=$\frac{3\sqrt{3}}{14}$.

分析 先利用余弦定理求得b=AC的值,再用正弦定理求得sinB的值.

解答 解:在△ABC中,∠A=120°,AB=c=5,BC=a=7,由余弦定理可得 49=25+b2-10b•cos120°,
解得 b=3.
由正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{3×\frac{\sqrt{3}}{2}}{7}$=$\frac{3\sqrt{3}}{14}$.
故答案為:$\frac{3\sqrt{3}}{14}$.

點(diǎn)評(píng) 本題主要考查正弦定理、余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(Ⅰ)計(jì)算:${({\sqrt{2}-1})^0}-\sqrt{\frac{1}{{4×{3^2}}}}+\frac{1}{{{2^2}×\sqrt{2+{2^{-2}}}}}$;
(Ⅱ)若tanx=2,求值:$\frac{2sin(π-x)-cosx}{{cosx-cos(\frac{3π}{2}-x)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若關(guān)于x的方程(2-2-|x+2|2=2+a有實(shí)根,則實(shí)數(shù)a的取值范圍是[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若a>-2,b>0且a+b=8,則$\sqrt{(a+2)b}$的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知,△ABC兩邊長(zhǎng)分別為4,3,其夾角平分線長(zhǎng)為2,則此三角形面積為$\frac{7\sqrt{95}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(sinx,k),$\overrightarrow{c}$=(-2cosx,sinx-k).
(1)當(dāng)x=$\frac{π}{4}$時(shí),求|$\overrightarrow$+$\overrightarrow{c}$|;
(2)若g(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$,求當(dāng)k為何值時(shí),g(x)的最小值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,2Sn+an=n2+2n+2,n∈N*
(1)求證:{an-n}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{n•(an-n)}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|x2-3x-4>0},集合B={x||2-x|≤4},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.三棱錐A-BCD的外接球半徑為$\sqrt{13}$,AD=2,且滿足$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{AB}•\overrightarrow{AD}$=$\overrightarrow{AC}•\overrightarrow{AD}=0$,則三棱錐A-BCD體積的最大值為(  )
A.2B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案