10.(Ⅰ)計算:${({\sqrt{2}-1})^0}-\sqrt{\frac{1}{{4×{3^2}}}}+\frac{1}{{{2^2}×\sqrt{2+{2^{-2}}}}}$;
(Ⅱ)若tanx=2,求值:$\frac{2sin(π-x)-cosx}{{cosx-cos(\frac{3π}{2}-x)}}$.

分析 (Ⅰ)由條件利用分數(shù)指數(shù)冪的運算法則求得要求式子的值.
(Ⅱ)由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 (Ⅰ)解:${({\sqrt{2}-1})^0}-\sqrt{\frac{1}{{4×{3^2}}}}+\frac{1}{{{2^2}×\sqrt{2+{2^{-2}}}}}$=1-$\frac{1}{6}$+$\frac{1}{4•\frac{3}{2}}$=1.
(Ⅱ)解:∵tanx=2,∴$\frac{2sin(π-x)-cosx}{{cosx-cos(\frac{3π}{2}-x)}}$=$\frac{2sinx-cosx}{cosx+sinx}=\frac{2tanx-1}{1+tanx}=\frac{2×2-1}{1+2}=1$.

點評 本題主要考查分數(shù)指數(shù)冪的運算法則,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x(x-2).
(1)畫出函數(shù)f(x)的圖象;
(2)寫出函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\frac{{\sqrt{3}-tan{{15}^0}}}{{\sqrt{3}tan{{15}^0}+1}}$=(  )
A.-1B.$\frac{{\sqrt{3}}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ln|x-2|-|x-2|,則它的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把截面半徑為5的圓形木頭鋸成面積為y的矩形木料,如圖,點O為圓心,OA⊥OB,設(shè)∠AOB=θ,把面積y表示為θ的表達式,則有(  )
A.y=50cos2θB.y=25sinθC.y=25sin2θD.y=50sin2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cosθ=$\frac{3}{5}$(-$\frac{π}{2}$<θ<0),則cos(θ-$\frac{π}{6}$)的值是( 。
A.$\frac{3\sqrt{3}±4}{10}$B.$\frac{4±3\sqrt{3}}{10}$C.$\frac{3\sqrt{3}-4}{10}$D.$\frac{3\sqrt{3}+4}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=3x2-5x+a的一個零點在區(qū)間(-2,0)內(nèi),另一個零點在區(qū)間(1,3)內(nèi),則實數(shù)a的取值范圍是(-12,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{y≥-1}\end{array}\right.$,求:
(Ⅰ)z=x+2y-4的最大值;
(Ⅱ)z=$\frac{2y+1}{x+1}$的范圍;
(III)z=x2+y2-10y+25的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,若A=120°,AB=5,BC=7,則sinB=$\frac{3\sqrt{3}}{14}$.

查看答案和解析>>

同步練習(xí)冊答案