10.函數(shù)y=x2+2x+m在(2,3)上只有一個零點,則m的取值范圍是(-15,-8).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,則不等式$\frac{f(x)}{x}$<0的解集為(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}滿足:a1=1,a2=$\frac{1}{2}$,且an+2=$\frac{{a}_{n+1}^{2}}{{a}_{n}+{a}_{n+1}}$(n∈N),則($\frac{{a}_{2}{a}_{1}}{{a}_{3}}$+$\frac{{a}_{2}{a}_{2}}{{a}_{4}}$+…+$\frac{{a}_{2}{a}_{2007}}{{a}_{2009}}$)-$\frac{{a}_{3}{a}_{2007}}{{a}_{2010}}$為-19109427.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a、b、c是正實數(shù),且a+b+c=3,求$\frac{{a}^{2}+9}{2a+(b+c)^{2}}$+$\frac{^{2}+9}{2^{2}+(a+c)^{2}}$+$\frac{{c}^{2}+9}{2{c}^{2}+(b+a)^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a,b,c均為正數(shù),且滿足3a=$lo{g}_{\frac{1}{3}}$a,($\frac{1}{3}$)b=$lo{g}_{\frac{1}{3}}$b,($\frac{1}{3}$)c=log3c,則a,b,c大的順序排列為a<b<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-a2x2+ax-1,x∈[0,1].若a≥$\frac{1}{2}$,則f(x)的最大值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若α∈R,則集合M={x}x2-3x-a2+2=0,x∈R}的子集的個數(shù)為( 。
A.4B.16C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC中,角A、B、C所對的邊長分別為a、b、c.
(1)若acosC=(2b-c)cosA,求角A的大小;
(2)已知3c=2b,且E,F(xiàn)分別是邊AC,AB,的中點,若|BE|<t|CF|恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求證:無論m取什么實數(shù),直線l恒過第一象限;
(2)求直線l被圓C截得的弦長最短時m的值以及最短長度;
(3)設(shè)直線l與圓C相交于A、B兩點,求AB中點M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案