18.若不等式ax2+bx+c>0的解集為{x|-1<x<2},則不等式$\frac{2a+b}{x}$+c>bx的解集為(-∞,0).

分析 由題意得-1、2是方程ax2+bx+c=0的兩根,得到a<0,利用韋達(dá)定理得到b=-a,c=-2a,再解不等式即可.

解答 解:不等式ax2+bx+c>0的解集為{x|-1<x<2},
故-1和2是方程ax2+bx+c=0的兩個(gè)根,且a<0,
根據(jù)韋達(dá)定理得:-$\frac{a}$=-1+2=1,即b=-a>0,$\frac{c}{a}$=-2,即c=-2a>0,
∵不等式$\frac{2a+b}{x}$+c>bx,
∴-$\frac{1}{x}$+2>x,
即 $\frac{{x}^{2}-2x+1}{x}$<0,
解得x<0,
故答案為:(-∞,0)

點(diǎn)評(píng) 本題主要考查一元二次方程的根與系數(shù)的關(guān)系,一元二次不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若sin x•tan x<0,則角x的終邊位于( 。
A.第一、二象限B.第二、三象限C.第二、四象限D.第三、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知a、b為實(shí)數(shù),且a>0,b>0,則(a+b+$\frac{1}{a}$)(a2+$\frac{1}$+$\frac{1}{{a}^{2}}$)的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)數(shù)列{an}(n∈N)滿足a0=0,a1=2,且對(duì)一切n∈N,有an+2=2an+1-an+2.
(1)求a2,a3的值;
(2)證明:數(shù)列{an-an-1}為等差數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知冪函數(shù)f(x)=(m-1)2x${\;}^{{m}^{2}-4m+2}$在(0,+∞)上單調(diào)遞增,函數(shù)g(x)=2x-k,當(dāng)x∈[1,2)時(shí),記f(x),g(x)的值域分別為集合A,B,若A∪B=A,則實(shí)數(shù)k的取值范圍是(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.α,β,γ為平面,l是直線,已知α∩β=l,則“α⊥γ,β⊥γ”是“l(fā)⊥γ”的( 。l件.
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若a∈R,則a=1是復(fù)數(shù)z=a2-1+(a+1)i是純虛數(shù)的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an},a3=7,a2+a5+a8=39,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{3}{{{a_n}{a_{n+1}}}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<$\frac{m}{20}$對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.由直線x-y+1=0,x+y-5=0和x-1=0所圍成的三角形區(qū)域(包括邊界)用不等式組可表示為( 。
A.$\left\{\begin{array}{l}{x-y+1≤0}\\{x+y-5≤0}\\{x≥1}\end{array}\right.$B.$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-5≤0}\\{x≥1}\end{array}\right.$
C.$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-5≥0}\\{x≤1}\end{array}\right.$D.$\left\{\begin{array}{l}{x-y+1≤0}\\{x+y-5≤0}\\{x≤1}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊(cè)答案