如圖是某糧食烘干設(shè)備的簡易圖,它是由兩個完全一樣的四棱錐P1-ABCD與P2-ABCD組成,四邊形ABCD是邊長為a的正方形,O1、O2分別是BC、AD的中點,P1O2⊥面ABCD,P2O1⊥面ABCD,且P1O2=P2O1=a,設(shè)備工作時,糧食從兩個四棱兩端的非公共部分流入烘干設(shè)備,烘干后糧食自動流到公共部分,要使這個糧食烘干設(shè)備一次烘干糧食的體積不小于45個單位體積,求a的最小值.
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:如圖所示,連接EF,P1P2.可得V三棱錐P2-P1AD=
1
3
×SP1AD×P1P2
.由于
V四棱錐P1-AEFD
V三棱錐P1-EFP2
=
S梯形ADEF
S△EFP2
=
3
1
,可得這個糧食烘干設(shè)備一次烘干糧食的體積=2V四棱錐P1-ADFE≥45,解出即可.
解答: 解:如圖所示,連接EF,P1P2
V三棱錐P2-P1AD=
1
3
×SP1AD×P1P2

=
1
3
×
1
2
a2×a
=
1
6
a3

V四棱錐P1-AEFD
V三棱錐P1-EFP2
=
S梯形ADEF
S△EFP2
=
3
1
,
∴這個糧食烘干設(shè)備一次烘干糧食的體積=2V四棱錐P1-ADFE
=
3
4
×
1
6
a3

=
1
4
a3
≥45,
解得a≥
3180
點評:本題考查了三棱錐與四棱錐的體積計算公式、線面面面垂直的性質(zhì),考查了分析問題與解決問題的能力,考查了推理能力與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin(α-π)=
3
5
,α為第四象限角,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題 p:?x∈R,cosx≤1,則( 。
A、¬p:?x0∈R,cosx0≥1
B、¬p:?x∈R,cosx≥1
C、¬p:?x∈R,cosx>1
D、¬p:?x0∈R,cosx0>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知等差數(shù)列{an}中,a1+a3+a5=21,求該數(shù)列的前5項的和S5的值;
(Ⅱ)已知等比數(shù)列{an}中,a1=2,an=64,q=2,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,三棱柱ABC-A1B1C1D1,中,側(cè)面BB1C1C為菱形,B1C的中點為O,且AO⊥平面BB1C1C.
(1)證明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱錐A-BB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1,側(cè)棱AA1垂直于底面ABC,∠BAC=90°,AB=AC=AA1=6,D為BC的中點.
(Ⅰ)若E為棱CC1的中點,求證:DE⊥A1C;
(Ⅱ)若E為棱CC1上的任意一點,求證:三棱錐A1-ADE的體積為定值,并求出此定值.γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)分別是橢圓E:
x2
2
+
y2
b2
=1(b>0)的左、右焦點、橢圓的離心率e=
2
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直線y=kx+m與橢圓E有且只有一個公共點P,且與直線x=2相交于點Q,求證:以線段PQ為直徑的圓恒過定點F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=x2+ln(x+a),其中a為常數(shù).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)若g(x)存在兩個極值點x1,x2,求證:無論實數(shù)a取什么值都有
g(x1)+g(x2)
2
>g(
x1+x2
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠計劃生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品都需要兩種原料.生產(chǎn)甲產(chǎn)品1工時需要A種原料3kg,B種原料1kg;生產(chǎn)乙產(chǎn)品1工時需要A種原料2kg,B種原料2kg.現(xiàn)有A種原料1200kg,B種原料800kg.如果生產(chǎn)甲產(chǎn)品每工時的平均利潤是30元,生產(chǎn)乙產(chǎn)品每工時的平均利潤是40元,問甲、乙兩種產(chǎn)品各生產(chǎn)多少工時能使利潤的總額最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案