17.一座底是長方形、屋頂是正三棱柱的倉庫,尺寸如圖標(biāo)注(單位:米),求這倉庫的容積(墻厚略去不計).

分析 倉庫容積為底部長方體和上部三棱柱的體積之和.

解答 解:下部長方體的體積V長方體=7×10×3=210(立方米).
上部正三棱柱的體積V三棱柱=$\frac{\sqrt{3}}{4}×{7}^{2}×10$=$\frac{245\sqrt{3}}{2}$(立方米).
∴倉庫的容積為V=V長方體+V三棱柱=210+$\frac{245\sqrt{3}}{2}$(立方米).

點評 本題考查了常見幾何體的體積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)1名老師和6名學(xué)生排成一排,要求老師不能站在兩端,那么有多少種不同的排法?
(2)從6名男生、5名女生中任選4人參加競賽,要求男女至少各1名,有多少種不同選法?
(3)一張節(jié)目表上原有3個節(jié)目,如果保持這3個節(jié)目的相對順序不變,再添進去2個新節(jié)目,有多少種安排方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個包內(nèi)裝有4本不同的科技書,另一個包內(nèi)裝有5本不同的科技書,從兩個包內(nèi)任取一本的取法有( 。┓N.
A.15B.4C.9D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若雙曲線x2-$\frac{y^2}{b^2}$=1的一個焦點到其漸近線的距離為2$\sqrt{2}$,則該雙曲線的焦距等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.從4名男生,3名女生中選派3人參加學(xué)科競賽,一人參加數(shù)學(xué)競賽、一人參加物理競賽、一人參加化學(xué)競賽,若3人中既有男生又有女生,則不同的選派方法有180種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一個袋子中有形狀大小完全相同的3個黑球和4個白球.
(1)從中任意摸出一球,用0表示摸出黑球,用1表示摸出白球,即X=$\left\{\begin{array}{l}{0,摸出黑球}\\{1,摸出白球}\end{array}\right.$,求X的分布列.
(2)從中任意摸出兩個球,用“ξ=0”表示兩個球全是黑球,用“ξ=1”兩個球不全是黑球,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某家父母記錄了女兒玥玥的年齡(歲)和身高(單位cm)的數(shù)據(jù)如下:
年齡x 6 7 8
 身高y 118 126 136144
(1)試求y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$
(2)試預(yù)測玥玥10歲時的身高.(其中,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知F1(-c,0)為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,直線y=kx與雙曲線交于A,B兩點,若|$\overrightarrow{A{F}_{1}}$|=$\frac{c}{a}$|$\overrightarrow{B{F}_{1}}$|,則雙曲線的離心率的取值范圍是(1,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}的通項公式是an=n2-10n+1,
(1)求該數(shù)列的前3項;
(2)判別25是不是該數(shù)列中的某一項;
(3)求該數(shù)列的最小項.

查看答案和解析>>

同步練習(xí)冊答案