7.若函數(shù)f(x)=sinax+cosax(a>0)的最小正周期為1,則a等于2π.

分析 化簡函數(shù)f(x)=sinax+cosax(a>0)為$\sqrt{2}$sin(ax+$\frac{π}{4}$),利用周期求出a.

解答 解:f(x)=sinax+cosax=$\sqrt{2}$sin(ax+$\frac{π}{4}$)
T=$\frac{2π}{a}$=1,則a=2π,
故答案為:2π.

點評 本題考查正弦函數(shù)的對稱性,考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4-{2}^{-x},x≤0}\\{-lo{g}_{2}x,x>0}\end{array}\right.$則f(f(8))等于( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若等差數(shù)列{an}的首項a1=13,d=-4,記Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x>3時,不等式x+$\frac{1}{x-1}$≥a恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,3]B.[3,+∞)C.[$\frac{7}{2}$,+∞)D.(-∞,$\frac{7}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求隱函數(shù)ey+xy-e=0的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={x|-1<x<1},N={x|x2<2,x∈Z},則( 。
A.M⊆NB.N⊆MC.M∩N={0}D.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.請寫出下面數(shù)列的一個通項公式
(1)10,100,1000,10000,…
(2)10,200,3000,40000,…
(3)0.9,0.99,0.999,0.9999,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2+mx+n,對任意的t,都有f(1+t)=f(1-t),那么f(1),f(-2),f(4)的大小關(guān)系為:f(4)=f(-2)>f(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$).
(1)求f(x)的最小正周期和f($\frac{π}{8}$)的值;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案