14.若函數(shù)f(x)=e-x+ax(a∈R)在區(qū)間(1,+∞)上為增函數(shù),則a的取值范圍是( 。
A.(0,+∞)B.[0,+∞)C.($\frac{1}{e}$,+∞)D.[$\frac{1}{e}$,+∞)

分析 求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系轉(zhuǎn)化為求f′(x)≥0恒成立即可.

解答 解:若函數(shù)f(x)=e-x+ax(a∈R)在區(qū)間(1,+∞)上為增函數(shù),
則f′(x)≥0在區(qū)間(1,+∞)上恒成立,
即f′(x)=-e-x+a≥0,
即a≥e-x,
當(dāng)x≥1時(shí),0<e-x≤e-1=$\frac{1}{e}$,
則a≥$\frac{1}{e}$,
故實(shí)數(shù)a的取值范圍是[$\frac{1}{e}$,+∞),
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)y=2x-${log}_{\frac{1}{2}}$(x+1)在區(qū)間[1,3]上的最大值和最小值之和為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=|2x-1|-1;
(1)作出函數(shù)f(x)的圖象;
(2)討論方程f(x)-2a=0(a∈R)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ex-ax-a,g(x)=me-x-ax+a.
(1)若函數(shù)f(x)-g(x)為偶函數(shù),求m的值;
(2)在(1)的條件下,若a>0,f(x)≥0對(duì)一切x∈R恒成立,且存在g(x0)≥0,求a的值;
(3)設(shè)h(x)=f(x)+$\frac{a}{{e}^{x}}$,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=h(x)上任意兩點(diǎn),若對(duì)任意a≤-1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$>m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點(diǎn)A(-3,6)關(guān)于點(diǎn)P(2,-1)對(duì)稱點(diǎn)的點(diǎn)的坐標(biāo)是( 。
A.(1,-4)B.(1,4)C.(-7,8)D.(7,-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若log5$\frac{1}{2}$•log29•log9a=-2,則a=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=ax5+bx3+cx+3,若f(3)=10,則f(-3)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個(gè)焦點(diǎn)分別為F1、F2,以F1F2為邊作正△MF1F2,若雙曲線恰好平分該三角形的另兩邊,則雙曲線的離心率為( 。
A.$\sqrt{2}$+1B.$\sqrt{3}$+1C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在直三棱柱(側(cè)棱垂直底面的棱柱)ABC-A1B1C1中,∠ACB=90°,AC=3,BC=4,AA1=4,點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求證:AC1∥平面CDB1
(Ⅲ)求異面直線AC1與B1C所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案