11.若函數(shù)f(x)=asinx+b的最大值為3,最小值為2,則a,b的值分別為$±\frac{1}{2}$,$\frac{5}{2}$.

分析 根據(jù)三角函數(shù)的最值列方程組解出.

解答 解:∵f(x)的最大值為3,最小值為2,
∴$\left\{\begin{array}{l}{|a|+b=3}\\{-|a|+b=2}\end{array}\right.$,解得|a|=$\frac{1}{2}$,b=$\frac{5}{2}$.
故答案為:$±\frac{1}{2}$,$\frac{5}{2}$.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,在定義域內(nèi)是偶函數(shù),且值域?yàn)閇0,+∞)的是(  )
A.f(x)=x2B.f(x)=2x-1C.f(x)=x2+cosxD.f(x)=xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|x≥-1},B={x|y=ln(x-2)},則A∩(∁RB)=(  )
A.[-1,+∞)B.[-1,2]C.[2,+∞)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法不正確的是(  )
A.度與弧度是度量角的兩種不同的度量單位
B.1度的角是圓周長(zhǎng)的$\frac{1}{360}$所對(duì)的圓心角,1弧度的角是圓周的$\frac{1}{2π}$所對(duì)的圓心角
C.根據(jù)弧度的定義,知180°一定等于π弧度
D.不論是用角度制還是弧度制度量角,角的大小都與圓的半徑長(zhǎng)短有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中,Sn=-2n2+16n,則該數(shù)列前多少項(xiàng)的和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.畫出函數(shù)y=cosx•$\frac{|sinx|}{|cosx|}$(0≤x<2π,且x≠$\frac{π}{2}$,$\frac{3π}{2}$)的圖象.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(x2-x+2)10展開式中x15的系數(shù)為-3372.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos(π-x)cosx(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知θ∈(0,$\frac{π}{4}$),且sinθ+cosθ=$\frac{\sqrt{6}}{2}$.
(1)求sin2θ的值.
(2)求sin(2θ+$\frac{π}{4}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案