8.如圖.小正六邊形沿著大正六邊形的邊按順時針方向滾動,小正六邊形的邊長是大正六邊形的邊長的一半.如果小正六邊形沿著大正六邊形的邊滾動一周后返回出發(fā)時的位置,在這個過程中,向量$\overrightarrow{OA}$圍繞著點O旋轉(zhuǎn)了θ角,其中O為小正六邊形的中心,則sin$\frac{θ}{6}$+cos$\frac{θ}{6}$=-1.

分析 根據(jù)已知,可得向量$\overrightarrow{OA}$圍繞著點O旋轉(zhuǎn)了1080度,代入sin$\frac{θ}{6}$+cos$\frac{θ}{6}$,可得答案.

解答 解:從圖中得出:
第一個到第二個OA轉(zhuǎn)過了60度,
第二個到第三個轉(zhuǎn)過了120度,
依此類推每一次邊上是60度,轉(zhuǎn)角是120度,
共有6個轉(zhuǎn)角一共就是1080度,
所以xsin180°+cos180°=-1.
故答案為:-1

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=1nx,g(x)=-$\frac{1}{x}$.判斷曲線y=f(x)與曲線y=g(x)(x<0)的公共切線(與兩曲線均相切)的條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“m=1”是“函數(shù)f(x)=log2(1+mx)+log2(1-x)為偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.當(dāng)x∈[0,5]時,函數(shù)f(x)=3x2-4x+1的值域為[$-\frac{1}{3}$,56].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.針對時下的網(wǎng)購熱,某單位對“喜歡網(wǎng)購與職工性別是否有關(guān)”進行了一次調(diào)查,其中男職工有60人,女職工人數(shù)是男職工人數(shù)的$\frac{1}{2}$,喜歡網(wǎng)購的男職工人數(shù)是男職工人數(shù)的$\frac{1}{6}$,喜歡網(wǎng)購的女職工人數(shù)是女職工人數(shù)的$\frac{2}{3}$.則K2=22.5.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某研究機構(gòu)為了研究人的腳的大小與身高之間的關(guān)系,隨機抽測了20人,得到如下數(shù)據(jù):
序號12345678910
身高x(cm)192164172177176159171166182166
腳長(碼)48384043443740494639
序號11121314151617181920
身高x(cm)169178167174168179165170162170
腳長y(碼)42414043404438423941
(Ⅰ)若“身高大于175厘米”的為“高個”,“身高不超過175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長不超過42碼”的為“非大腳”.
請根據(jù)上表數(shù)據(jù)完成下面的2×2列聯(lián)表:
高個非高個合計
大腳
非大腳12
合計20
(Ⅱ)根據(jù)(1)中表格的數(shù)據(jù),你能否有99%的把握認(rèn)為腳的大小與身高有關(guān)系?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對于每個正整數(shù)n,設(shè)f(n)=$\sum_{i=1}^{100}[lg(in)]$,若f(n)<300,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,它滿足第n行首尾兩數(shù)均為n,則第7行第2個數(shù)是22.第n行(n≥2)第2個數(shù)是$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=-x2+ax-a+6,x∈[0,1].
(1)求f(x)的最小值g(a);
(2)若g(a)>a2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案