11.如圖,已知三棱柱ABC-A1B1C1的側(cè)面與底面垂直,AA1=AB=AC=1,AB⊥AC,M、N、P分別是CC1、BC、A1B1的中點(diǎn).
(1)求證:PN⊥AM;
(2)若直線MB與平面PMN所成的角為θ,求sinθ的值.

分析 (1)以A為原點(diǎn),AB為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能證明PN⊥AM.
(2)求出平面PMN的一個(gè)法向量,由此利用向量法能求出sinθ.

解答 (1)證明:以A為原點(diǎn),AB為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
則A(0,0,0),B(1,0,0),C(0,1,0),C1(0,1,1),P($\frac{1}{2}$,0,1),
M(0,1,$\frac{1}{2}$),N($\frac{1}{2}$,$\frac{1}{2}$,0),
$\overrightarrow{NP}=(0,-\frac{1}{2},1)$,$\overrightarrow{AM}$=(0,1,$\frac{1}{2}$),
∵$\overrightarrow{NP}•\overrightarrow{AM}$=0+$\frac{1}{2}-\frac{1}{2}$=0,
∴PN⊥AM.
(2)解:設(shè)平面PMN的一個(gè)法向量為$\overrightarrow{{n}_{1}}$=(x1,y1,z1),
$\overrightarrow{NP}=(0,-\frac{1}{2},1)$,$\overrightarrow{NM}$=(-$\frac{1}{2},\frac{1}{2},\frac{1}{2}$),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{NP}=-\frac{1}{2}{y}_{1}+{z}_{1}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{NM}=-\frac{1}{2}{x}_{1}+\frac{1}{2}{y}_{1}+\frac{1}{2}{z}_{1}=0}\end{array}\right.$,
令y1=2,得$\overrightarrow{{n}_{1}}$=(3,2,1),
又$\overrightarrow{MB}$=(1,-1,-$\frac{1}{2}$),
∴sinθ=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{MB}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{MB}|}$=$\frac{\frac{1}{2}}{\frac{3}{2}×\sqrt{14}}$=$\frac{\sqrt{14}}{42}$.

點(diǎn)評(píng) 本題考查異面直線垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某四面體的三視圖如圖所示.該四面體的六條棱中,最大長(zhǎng)度是2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知在直三棱柱ABC-A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當(dāng)θ變化時(shí),mn的值不可能是(  )
A.$\sqrt{3}$B.4C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知復(fù)數(shù)z滿足$\overline{z}$(1-i)=1+i(i是虛數(shù)單位),則z=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖:在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AC⊥BC.
(1)求多面體ABC-A1C1的體積;
(2)異面直線A1B與AC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N)在函數(shù)y=2x2+x-1的圖象上,則數(shù)列{an}通項(xiàng)公式為an=$\left\{\begin{array}{l}{2,n=1}\\{4n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)三棱柱ABC-A1B1C1為正三棱柱,底面邊長(zhǎng)及側(cè)棱長(zhǎng)均為a,E、F分別是AA1,CC1的中點(diǎn),求幾何體B-EFB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(log2x)=ax2-2x+1-a,a∈R.
(1)求f(x)的解析式;
(2)解關(guān)于x的方程f(x)=(a-1)•4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y+5≥0}\\{x-y≤0}\\{y≤0}\end{array}\right.$,則z=2x+4y-3的最大值是-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案