1.設(shè)P、Q是兩個非空集合,定義集合P+Q={a+b|a∈P,b∈Q},若P={1,2,5},Q={1,2,6},P+Q的非空真子集個數(shù)為126.

分析 先求出P+Q,再由n元集合有2n-2個非空真子集,可得答案.

解答 解:∵P={1,2,5},Q={1,2,6},
∴P+Q={2,3,7,4,8,6,11}共7個元素,
故P+Q的非空真子集個數(shù)為27-2=126,
故答案為:126.

點評 本題考查的知識點是子集與真子集,熟練掌握n元集合有2n-2個非空真子集,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax(a∈R),g(x)=$\frac{x}$+2lnx(b∈R),G(x)=f(x)-g(x),且G(1)=0,G(x)在x=1處的切線斜率為0
(I)求a,b;
(Ⅱ)設(shè)an=G′($\frac{1}{n}$)+n-2,求證:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{11}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2-2x+3,x∈R},則A∩B={y|-4≤y≤4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若2=Z(1-i),則Z=( 。
A.1B.1-iC.1+iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=$\left\{{\begin{array}{l}{x+1,x>0}\\{π,x=0}\\{0,x<0}\end{array}}$,則f{f[f(-2015)]}=π+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)在R上是偶函數(shù),且滿足f(4-x)=f(x),若x∈(0,2)時,f(x)=2x2,則f(7)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某電子廣告牌連續(xù)播出四個廣告,假設(shè)每個廣告所需的時間互相獨立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計,以往播出100次所需的時間(t)的情況如下:
類別1號廣告2號廣告3號廣告4號廣告
廣告次數(shù)20304010
時間t(分鐘/人)2346
每次隨機播出,若將頻率視為概率.
(Ⅰ)求恰好在開播第6分鐘后開始播出第3號廣告的概率;
(Ⅱ)求第4分鐘末完整播出廣告1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四邊形ABCD中,AD∥BC,BC=CD,∠ADC=90°,BC=DC=2AD,E為四邊形ABCD內(nèi)一點,F(xiàn)為四邊形ABCD外一點,且∠BEC=∠DFC=90°,BE∥CF交CD的中點于N.
(1)已知EC=1,求線段DF的長;
(2)連接BF交EC于G,求證:∠A+$\frac{1}{3}$∠ABF=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

等比數(shù)列的第四項等于( )

A.-24 B.0 C.12 D.24

查看答案和解析>>

同步練習(xí)冊答案