3.等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a2a4=( 。
A.6B.9C.36D.81

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a1=3,a1+a3+a5=21,
∴3(1+q2+q4)=21,
化為:q4+q2-6=0,
解得q2=2.
則a2a4=${a}_{1}^{2}{q}^{4}$=32×22=36.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)3≤x≤9時(shí),f(x)=3-|x-m|+n,f(6)=111,
(I)求m、n的值:
(Ⅱ)當(dāng)0≤x0≤6時(shí),求滿足f(x0)>$\frac{331}{3}$的實(shí)數(shù)x0的取值范圍:
(Ⅲ)比較f(log3m)與f(log3n)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在△ABC中,∠B=45°,D是BC邊上一點(diǎn),AC=7,AD=5,DC=3,則AB的長(zhǎng)為(  )
A.$\frac{\sqrt{6}}{15}$B.5C.$\frac{5\sqrt{6}}{2}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.高二舉行了一次語文知識(shí)競(jìng)賽,其中一題為連線題,要求將4位文學(xué)家與它們的作品一對(duì)一連線,規(guī)定每連對(duì)一條得5分,連錯(cuò)一條得-2分,某同學(xué)隨機(jī)用4條線將文學(xué)家與作品一對(duì)一連接起來.
(1)求該同學(xué)恰好連對(duì)一題的概率P1;
(2)求該同學(xué)得分不低于6分的概率P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0.\end{array}\right.$,則x-3y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和Sn滿足${S_n}=\frac{3n}{2}-\frac{n^2}{2},n∈{N^*}$.
(I)求{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}\}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:函數(shù)y=cx為減函數(shù);命題q:已知c>0,當(dāng)x∈[1,2]時(shí),函數(shù)f(x)=x+$\frac{1}{4x}>\frac{1}{c}$恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x>1\\(4-\frac{a}{3})x+4,x≤1\end{array}$在(-∞,+∞)上單調(diào)遞增,則a的取值范圍是( 。
A.(6,12)B.(1,+∞)C.[6,12)D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若不等式2xlnx≥-x2+ax-3對(duì)x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案