5.設(shè)定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-3|},x≠3}\\{1,x=3}\end{array}\right.$,若關(guān)于x的方程f2(x)+af(x)+b=0有5個不同實數(shù)解,則實數(shù)a的取值范圍是a<-1且a≠-2.

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-3|},x≠3}\\{1,x=3}\end{array}\right.$的圖象,從而利用數(shù)形結(jié)合知x2+ax+b=0有2個不同的正實數(shù)解,且其中一個為1,從而可得-1-a>0且-1-a≠1;從而解得.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-3|},x≠3}\\{1,x=3}\end{array}\right.$的圖象如下,

∵關(guān)于x的方程f2(x)+af(x)+b=0有5個不同實數(shù)解,
∴x2+ax+b=0有2個不同的正實數(shù)解,且其中一個為1;
故1+a+b=0,故b=-a-1,
故x2+ax+b=x2+ax-1-a=(x-1)(x+1+a)=0,
故-1-a>0且-1-a≠1;
故a<-1且a≠-2;
故答案為:a<-1且a≠-2.

點評 本題考查了數(shù)形結(jié)合的思想應(yīng)用及分段函數(shù)的應(yīng)用,同時考查了因式分解的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=a+\frac{1}{{{2^x}+1}}$.
(1)當(dāng)函數(shù)f(x)為奇函數(shù)時,求a的值;
(2)判斷函數(shù)f(x)在區(qū)間(-∞,+∞)上是增函數(shù)還是減函數(shù),并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=xα的圖象過點(2,4),則f(-1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知極坐標系的極點在直角坐標系的原點處,極軸與x軸的正半軸重合,直線l的極坐標方程為:$\sqrt{2}ρsin(θ-\frac{π}{4})=2$,曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù))
(Ⅰ)寫出直線l的直角坐標方程;
(Ⅱ)求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解關(guān)于x的不等式:12x2-ax-a2<0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1與直線y=-$\frac{2}{3}$x+m(m∈R)的公共點的個數(shù)為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義在[0,+∞)上的函數(shù)f(x)滿足:對任意x,y總有f(x+y)=f(x)f(y),f(x)不恒為零,當(dāng)x>0時,f(x)>1.
(1)判斷f(x)的單調(diào)性;
(2)若f(2)=2,解不等式f(5x-x2)>8;
(3)設(shè)A={(x,y)|f(x2)f(y2)≤f(1)},且B={(x,y)|f(ax-y+$\sqrt{2}$)=1,a∈R},若A∩B=∅,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α=$\frac{7π}{5}$,則角α的終邊位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算:3${\;}^{lo{g}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案