分析 對a分類討論,再利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:an=an-1+lg2n=an-1+nlg2,
設(shè)則此數(shù)列的前n項(xiàng)和為Sn.
當(dāng)a=1時(shí),an=1+nlg2,
∴Sn=(1+lg2)n+$\frac{n(n-1)}{2}×lg2$=$\frac{lg2}{2}$n2+n(1+$\frac{1}{2}$lg2).
當(dāng)a>0,且a≠1時(shí),Sn=$\frac{1-{a}^{n}}{1-a}$+$\frac{n(n+1)}{2}$lg2.
綜上可得:Sn=$\left\{\begin{array}{l}{\frac{lg2}{2}{n}^{2}+n(1+\frac{1}{2}lg2),a=1}\\{\frac{1-{a}^{n}}{1-a}+\frac{n(n-1)}{2}lg2,a>0且a≠1}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{\frac{lg2}{2}{n}^{2}+n(1+\frac{1}{2}lg2),a=1}\\{\frac{1-{a}^{n}}{1-a}+\frac{n(n-1)}{2}lg2,a>0且a≠1}\end{array}\right.$.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦距 | B. | 準(zhǔn)線 | C. | 頂點(diǎn) | D. | 離心率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+(y+1)2=10 | B. | (x-3)2+(y+1)2=10 | C. | (x-1)2+(y+3)2=10 | D. | (x+1)2+(y-3)2=10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 432種 | B. | 288種 | C. | 216種 | D. | 144種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{3}{4}$) | B. | ($\frac{3}{4}$,2] | C. | [0,$\frac{3}{4}$) | D. | ($\frac{1}{2}$,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com