11.已知f(x)是二次函數(shù),若f(0)=3,且其圖象的頂點(diǎn)坐標(biāo)為(2,-3).
(1)求f(x)解析式;
(2)求函數(shù)y=f(x2-1)的值域.

分析 (1)設(shè)出函數(shù)的頂點(diǎn)式,將(0,3)代入可得f(x)解析式;
(2)令t=x2-1,則t≥-1,結(jié)合二次函數(shù)的圖象和性質(zhì),可得函數(shù)y=f(x2-1)的值域.

解答 解:(1)∵二次函數(shù)f(x)圖象的頂點(diǎn)坐標(biāo)為(2,-3).
∴設(shè)f(x)=a(x-2)2-3,
又∵f(0)=3,
∴4a-3=3,
∴a=$\frac{3}{2}$,
∴f(x)=$\frac{3}{2}$(x-2)2-3=$\frac{3}{2}$x2-6x-3:
(2)令t=x2-1,則t≥-1,
又∵函數(shù)f(x)的圖象開口朝上,且以直線x=2為對(duì)稱軸,
故t=2時(shí),函數(shù)取最小值-3,無最大值;
即函數(shù)y=f(x2-1)的值域?yàn)閇-3,+∞)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求$\frac{cos10°}{sin10°}$-4cos10°值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知(x-3)${\;}^{-\frac{1}{3}}$<(1+2x)${\;}^{-\frac{1}{3}}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線(m+2)x+(1-m)y-6=0與圓(x-2)2+y2=1的位置關(guān)系是( 。
A.相交B.相離C.相切D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.?dāng)?shù)列1,43,46,49…,43n+6,…中,43n+6是這個(gè)數(shù)列的第n+3項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示,在正方體ABCD-A1B1C1D1中,P為棱AB上一點(diǎn),過點(diǎn)P在空間作直線l,使l與平面ABCD和平面ABC1D1均成30°角,則這樣的直線l有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.閱讀如圖所示的程序框圖.
(1)寫出函數(shù)y=f(x)的解析式;
(2)由(1)中的函數(shù)y=f(x)表示的曲線與直線y=1圍成的三角形的內(nèi)切圓記為圓C,若向這個(gè)三角形內(nèi)隨機(jī)投擲一粒黃豆,求這粒黃豆落入圓C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對(duì)任意的x∈(0,+∞),都有f[f($\frac{1}{x}$)-x]=2,則f′($\frac{1}{2}$)=-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案