12.(1+2x+$\frac{1}{{x}^{2}}$)5的展開式中常數(shù)項(xiàng)為121.

分析 根據(jù)${[1+(2x+\frac{1}{{x}^{2}})]}^{5}$ 的展開式的通項(xiàng)公式為Tr+1=${C}_{5}^{r}$•${(2x+\frac{1}{{x}^{2}})}^{r}$,由于${(2x+\frac{1}{{x}^{2}})}^{r}$的展開式的通項(xiàng)為${C}_{r}^{k}$•2r-k•xr-3k,k=0,1,2,…r,k≤r,由此分類討論求得常數(shù)項(xiàng).

解答 解:(1+2x+$\frac{1}{{x}^{2}}$)5 =${[1+(2x+\frac{1}{{x}^{2}})]}^{5}$ 的展開式的通項(xiàng)公式為Tr+1=${C}_{5}^{r}$•${(2x+\frac{1}{{x}^{2}})}^{r}$,
r=0,1,2,3,4,5.
由于${(2x+\frac{1}{{x}^{2}})}^{r}$的展開式的通項(xiàng)為${C}_{r}^{k}$•2r-k•xr-3k,k=0,1,2,…r,k≤r,
令r-3k=0,求得r=3k,
當(dāng)r=0,k=0時(shí),常數(shù)項(xiàng)為${C}_{5}^{0}$=1;
當(dāng)r=3,k=1時(shí),常數(shù)項(xiàng)為${C}_{5}^{3}$•${C}_{3}^{1}$•22=120,
故(1+2x+$\frac{1}{{x}^{2}}$)5的展開式中常數(shù)項(xiàng)為1+120=121,
故答案為:121.

點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用問(wèn)題,解題的關(guān)鍵是得出產(chǎn)生常數(shù)項(xiàng)的情況為哪些,是中檔題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.從1,2,3,4,5,6,7這七個(gè)數(shù)字中任取兩個(gè)數(shù)字相加,其和為偶數(shù)的概率等于( 。
A.$\frac{1}{2}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)-sin2x-ln|x|+$\frac{1}{2}$的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\\{\;}\end{array}\right.$,則目標(biāo)函數(shù)z=mx+y的最大值為-2,則實(shí)數(shù)m=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直線l:3x-y+1=0上求一點(diǎn)P,使點(diǎn)P到兩點(diǎn)A(1,-1),B(2,0)的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若α=accsin$\frac{1}{4}$,β=arctan$\frac{\sqrt{5}}{5}$,γ=arccos$\frac{4}{5}$,則α,β,γ的大小關(guān)系是γ>β>α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.雙曲線$\frac{{x}^{2}}{2}$-y2=1的頂點(diǎn)坐標(biāo)為(±$\sqrt{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$則$\frac{x+2y}{2x+y}$的取值范圍為( 。
A.$[1,\frac{7}{5}]$B.$(1,\frac{7}{5}]$C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),M,N兩點(diǎn)在雙曲線C上,且MN∥F1F2,線段F1N交雙曲線C于點(diǎn)Q,且|F1Q|=|QN|.若|F1F2|=λ|MN|(λ>0),則λ的取值范圍為(2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案