分析 根據(jù)函數(shù)的奇偶性只要求出當(dāng)x∈(0,3)上不等式的解集即可.
解答 解:當(dāng)0<x<3時(shí),不等式f(x)•cosx<0等價(jià)為$\left\{\begin{array}{l}{f(x)>0}\\{cosx<0}\end{array}\right.$或$\left\{\begin{array}{l}{f(x)<0}\\{cosx>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{1<x<3}\\{\frac{π}{2}<x<3}\end{array}\right.$或$\left\{\begin{array}{l}{0<x<1}\\{0<x<\frac{π}{2}}\end{array}\right.$,即$\frac{π}{2}$<x<3或0<x<1,
∵函數(shù)f(x)•cosx為偶函數(shù),
∴當(dāng)x∈(-3,0)時(shí),不等式f(x)•cosx<0的解為-3<x<-$\frac{π}{2}$或-1<x<0,
綜上不等式的解為$\frac{π}{2}$<x<3或0<x<1或-3<x<-$\frac{π}{2}$或-1<x<0,
即不等式的解集為(-3,-$\frac{π}{2}$)∪(-1,0)∪(0,1)∪($\frac{π}{2}$,3),
故答案為:(-3,-$\frac{π}{2}$)∪(-1,0)∪(0,1)∪($\frac{π}{2}$,3)
點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)的奇偶性,利用對稱性求出0<x<3時(shí),不等式的解集是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{24}{25}$ | B. | $\frac{24}{25}$ | C. | $\frac{12}{25}$ | D. | -$\frac{12}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com