9.已知△ABC內(nèi)角A,B,C所對的邊分別為a,b,c,且acosC+$\frac{1}{2}$c=b.
(1)求角A的大;
(2)若b2-c2=$\frac{1}{2}$a2,求sinB•cosC的值;
(3)若7c2-7b2=5a2,求$\frac{c}$的值.

分析 (1)利用余弦定理把cosC代入,再利用余弦定理即可得出;
(2)由b2-c2=$\frac{1}{2}$a2,利用正弦定理可得:$si{n}^{2}B-si{n}^{2}C=\frac{1}{2}si{n}^{2}A$=$\frac{3}{8}$,又acosC+$\frac{1}{2}$c=b,可得$\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC=sinB$,可得:$\frac{1}{2}$sinCcosC=$\frac{\sqrt{3}}{8}$+$\frac{\sqrt{3}}{4}$sin2C-$\frac{\sqrt{3}}{4}co{s}^{2}C$,代入sinB•cosC,化簡整理即可得出.
(3)利用(1)的結(jié)論a2=b2+c2-bc,代入即可得出;

解答 解:(1)∵acosC+$\frac{1}{2}$c=b.
∴$a×\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$+$\frac{1}{2}c$=b,化為c2+b2-a2=bc.
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(2)∵b2-c2=$\frac{1}{2}$a2,利用正弦定理可得:$si{n}^{2}B-si{n}^{2}C=\frac{1}{2}si{n}^{2}A$=$\frac{1}{2}×(\frac{\sqrt{3}}{2})^{2}$=$\frac{3}{8}$,(*)
又acosC+$\frac{1}{2}$c=b,∴$\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC=sinB$,
代入(*)可得:$\frac{1}{2}$sinCcosC=$\frac{\sqrt{3}}{8}$+$\frac{\sqrt{3}}{4}$sin2C-$\frac{\sqrt{3}}{4}co{s}^{2}C$,
∴sinB•cosC=$(\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC)$•cosC
=$\frac{\sqrt{3}}{2}co{s}^{2}C$+$\frac{1}{2}sinCcosC$=$\frac{\sqrt{3}}{2}co{s}^{2}C$+$\frac{\sqrt{3}}{8}$+$\frac{\sqrt{3}}{4}$sin2C-$\frac{\sqrt{3}}{4}co{s}^{2}C$=$\frac{3\sqrt{3}}{8}$.
(3)由(1)可得:a2=b2+c2-bc,
代入7c2-7b2=5a2,
∴7c2-7b2=5(b2+c2-bc),
化為$12(\frac{c})^{2}$-$5×\frac{c}$-2=0,
解得$\frac{c}$=$\frac{3}{2}$.

點(diǎn)評 本題考查了正弦定理余弦定理、三角函數(shù)恒等變形,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知在等比數(shù)列{an}中,a1+a3=10,a2+a4=20,設(shè)cn=11-log2a2n
(1)求數(shù)列{cn}的通項(xiàng);
(2)求數(shù)列{cn}前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)在容器A中含有12%的鹽水300克,容器B中含有6%的鹽水300克,從兩容器中各取100克鹽水,倒在對方容器中,這樣操作了n(n∈N*)次后,設(shè)A中含有an%的鹽水,B中含有bn%的鹽水,則an+bn等于( 。
A.6B.12C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=|cos(2x+$\frac{6}{π}$)|的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α,β,γ滿足3sinα+4sinβ+5sinγ=0,3cosα+4cosβ+5cosγ=0,則cos2(α-γ)的值為( 。
A.-$\frac{3}{5}$B.-$\frac{7}{25}$C.$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=lg($\frac{1}{x}$-1)的定義域?yàn)锳,若對任意x∈A都有不等式$\frac{9x}{2-2x}$-m2x-2mx>-2恒成立,則正實(shí)數(shù)m的取值范圍是(0,$\frac{3\sqrt{6}-2}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)M={a|a=x2-y2,x,y∈Z},求證:4k-2∉M(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若負(fù)數(shù)a、b、c滿足a+b+c=-9,則$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$的最大值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=ax3-x在(-∞,+∞)上的減區(qū)間是[-1,1],則( 。
A.a=$\frac{1}{3}$B.a=1C.a=2D.a≤0

查看答案和解析>>

同步練習(xí)冊答案