3.已知復(fù)數(shù)z=(5-2i)2(i為虛數(shù)單位),則z的實部為-21.

分析 根據(jù)復(fù)數(shù)的代數(shù)運算法則,進行計算即可.

解答 解:復(fù)數(shù)z=(5-2i)2=25-20i+4i2=25-4-20i=21-20i,
所以z的實部為-21.
故答案為:-21.

點評 本題主要考查復(fù)數(shù)的有關(guān)概念,利用復(fù)數(shù)的基本運算是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a>b.則下列各式正確的是( 。
A.a•lgx>b•lgxB.ax2>bx2C.a2>b2D.a•2x>b•2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=ax2+bx-3在x=1處取得極值,且在(0,-3)點處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過點M(2,0),過點Q(1,0)的直線和橢圓C相交于A,B兩點,設(shè)點P(4,3),記PA,PB的斜率分別為k1,k2
(1)求橢圓C的方程;
(2)探究k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的范圍;
(3)探究k1•k2是否為定值?如果是,求出該定值;如果不是,求出k1•k2的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(2x)=log4$\sqrt{\frac{10x-1}{3}}$,則f(5)的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,${cos}^{2}\frac{x}{4}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(I)求f(x)的最大值,并求此時x的值;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,滿足f(B)=$\frac{\sqrt{3}+1}{2}$,a=2,c=3,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{6}$,則AA1與平面AB1C1所成的角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果復(fù)數(shù)$\frac{3-bi}{2+i}$(b∈R,i為虛數(shù)單位)的實部與虛部相等,則b的值為( 。
A.1B.-6C.3D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a>0且a≠l,函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x+1}-2,x≤0}\\{g(x),x>0}\end{array}\right.$為奇函數(shù),則a=2,g(f(2))=2-.

查看答案和解析>>

同步練習(xí)冊答案