13.若a>b.則下列各式正確的是( 。
A.a•lgx>b•lgxB.ax2>bx2C.a2>b2D.a•2x>b•2x

分析 根據(jù)不等式的性質(zhì)判斷即可.

解答 解:∵a>b,
lgx≤0時,不成立,A錯誤;
x=0時,ax2=bx2,B錯誤;
若a=0,b=-1,a2<b2,C錯誤;
2x>0,
∴a•2x>b•2x,D正確;
故選:D.

點(diǎn)評 本題考查了不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在設(shè)計求解一元一次方程ax+b=0(a,b為常數(shù))的算法時,需要用條件語句判斷a≠0?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知指數(shù)函數(shù)y=g(x)滿足:g($\frac{1}{2}$)=$\sqrt{2}$,定義域?yàn)镽的函數(shù)f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對于任意x∈[-5,5],都有f(1-x)+f(1-2x)>0成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.化簡:$\sqrt{(1+si{n}^{2}\frac{x}{2})^{2}+(1-si{n}^{2}\frac{x}{2})^{2}-4si{n}^{2}\frac{x}{2}}$=$\sqrt{2}co{s}^{2}\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)y=ax+b的圖象,則函數(shù)y=bx+a的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,已知cos2C=-$\frac{1}{4}$,若a=2,2sinA=sinC,則b的值為( 。
A.$\sqrt{6}$B.2$\sqrt{6}$C.$\sqrt{6}$或2$\sqrt{6}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.a(chǎn)、b、c、d、e是從集合{1,2,3,4,5}中任取的5個元素(不允許重復(fù)),則abc+de為奇數(shù)的概率為( 。
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=sinx(x∈[$\frac{π}{2}$,$\frac{3π}{2}$])的反函數(shù)為y=π-arcsinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z=(5-2i)2(i為虛數(shù)單位),則z的實(shí)部為-21.

查看答案和解析>>

同步練習(xí)冊答案