6.對(duì)某同學(xué)的6次物理測(cè)試成績(jī)(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,給出關(guān)于該同學(xué)物理成績(jī)的以下說(shuō)法:
①中位數(shù)為84;
②眾數(shù)為85;
③平均數(shù)為85; 
④極差為12;
其中,正確說(shuō)法的序號(hào)是①③.

分析 根據(jù)莖葉圖得出6個(gè)數(shù)分別為:78,83,83,85,91,90,利用定義分別判斷即可.

解答 解:6個(gè)數(shù)分別為:78,83,83,85,91,90
可得中位數(shù)為$\frac{83+85}{2}$=84,故①正確;
②眾數(shù)為83,故錯(cuò)誤;
③平均數(shù)為85,正確;
④極差為91-78=13,故錯(cuò)誤;
故答案為:①③.

點(diǎn)評(píng) 考查了莖葉圖和數(shù)據(jù)中眾數(shù),平均數(shù),極差的概念,屬于基礎(chǔ)題型,應(yīng)牢記.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.要得到函數(shù)$y=cos(4x-\frac{π}{4})$的圖象,只需將函數(shù)y=cos4x的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)單位B.向右平移$\frac{π}{4}$個(gè)單位
C.向左平移$\frac{π}{16}$個(gè)單位D.向右平移$\frac{π}{16}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.對(duì)任意非零實(shí)數(shù)a、b,定義一種運(yùn)算:a?b,其結(jié)果y=a?b的值由如圖確定,則$({{{log}_2}8})?{({\frac{1}{2}})^{-2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,并且經(jīng)過(guò)點(diǎn)P(3,0),求橢圓方程;
(2)與雙曲線x2-2y2=2有公共漸近線,且過(guò)點(diǎn)M(2,-2),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.橢圓4x2+9y2=36的焦點(diǎn)坐標(biāo)是( 。
A.(0,±3)B.(0,±$\sqrt{5}$)C.(±3,0)D.(±$\sqrt{5}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖1所示,拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0),與y軸交與點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)在BC下方的拋物線上是否存在點(diǎn)E,使△EBC的面積最大,如果存在,請(qǐng)求出最大面積及點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)如圖2所示,過(guò)點(diǎn)C作CP∥AB交拋物線與點(diǎn)P,在拋物線上是否存在點(diǎn)M,將線段PM繞點(diǎn)P旋轉(zhuǎn)90°后,點(diǎn)M恰好落在x軸上的點(diǎn)M1處,如果存在,請(qǐng)求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)雙曲線C:$\frac{{x}^{2}}{4}$-y2=λ(λ≠0),其中左準(zhǔn)線方程為x=-$\frac{4\sqrt{10}}{5}$.
(1)求λ的值及左右兩焦點(diǎn)F1,F(xiàn)2的坐標(biāo);
(2)設(shè)M是雙曲線C上一點(diǎn),且|OM|=$2\sqrt{2}$,F(xiàn)1,F(xiàn)2是橢圓E的兩個(gè)頂點(diǎn),并且橢圓E過(guò)點(diǎn)M,求橢圓E的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知A={(x,y)|x+y=2},B={(x,y)|x-y=4},則A∩B=( 。
A.{3,-1}B.{x=3,y=-1}C.{(3,-1)}D.(3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C中心在原點(diǎn),長(zhǎng)軸在x軸上,F(xiàn)1、F2為其左、右兩焦點(diǎn),點(diǎn)P為橢圓C上一點(diǎn),PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若傾斜角為45°的一動(dòng)直線l與橢圓C相交于A、B兩點(diǎn),求△AOB(O為坐標(biāo)原點(diǎn))面積的最大值及相應(yīng)的直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案