10.直線y=kx+m(k≠0)與橢圓$\frac{{x}^{2}}{4}$+y2=1相交于A,B兩點(diǎn),設(shè)點(diǎn)M(0,-1),若|MA|=|MB|,求m的取值范圍.

分析 設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)N(x0,y0).直線方程與橢圓方程聯(lián)立化為:(4k2+1)x2+8kmx+4m2-4=0,利用△>0,化為4k2+1>m2.由于|MA|=|MB|,可得kMN•kAB=-1,利用根與系數(shù)的關(guān)系、斜率計(jì)算公式可得:m(4m-1)(4m2-m-9)<0,解出即可.

解答 解:設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)N(x0,y0).
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,
化為:(4k2+1)x2+8kmx+4m2-4=0,
△=64k2m2-4(4k2+1)(4m2-4)>0,化為:4k2+1>m2
∴x1+x2=$\frac{-8km}{4{k}^{2}+1}$,x1x2=$\frac{4{m}^{2}-4}{4{k}^{2}+1}$.
∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{4km}{4{k}^{2}+1}$,y0=kx0+m=-$\frac{4{k}^{2}m}{4{k}^{2}+1}$+m=$\frac{m}{4{k}^{2}+1}$.
∵|MA|=|MB|,
∴kMN•kAB=-1,
∴$\frac{\frac{m}{4{k}^{2}+1}+1}{\frac{-4km}{4{k}^{2}+1}-0}$•k=-1,
化為:4k2=$\frac{5m+1}{4m-1}$.
∴4k2+1=$\frac{5m+1}{4m-1}$+1>m2,
化為:m(4m-1)(4m2-m-9)<0,由于4m2-m-9>0恒成立,化為m(4m-1)<0.
解得$0<m<\frac{1}{4}$.
∴m的取值范圍是$(0,\frac{1}{4})$.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、斜率計(jì)算公式、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線m過雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的左焦點(diǎn)F1,且與該雙曲線的左支交于A,B兩點(diǎn),若|AB|=2,雙曲線的右焦點(diǎn)為F2,則△ABF2的周長為( 。
A.6B.8C.12D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)點(diǎn)P在雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$上.若F1、F2為雙曲線的兩個(gè)焦點(diǎn),且PF1:PF2=1:3,則△F1PF2的周長為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C的方程為x2+y2-10x=0,求與y軸相切且與圓C外切的動(dòng)圓圓心P軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)A={x|-3≤x≤a},B={y|y=3x+10,x∈A},C={z|z=5-x},x∈A},且B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交z軸負(fù)半軸于點(diǎn)Q,且$2\overrightarrow{{F_1}{F_2}}$+$\overrightarrow{{F_2}Q}$=$\overrightarrow{0}$,若過A,Q,F(xiàn)2三點(diǎn)的圓的半徑為2.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交丁M、N兩點(diǎn),在x軸上存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知PA⊥面ABCD,PA=AB=3,面ABCD為正方形.試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求下列平面的法向量.
(1)面ABCD;
(2)面PAB;
(3)面PBC;
(4)面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知奇函數(shù)f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b∈N*,c∈R),f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)判斷f(x)在(1,+∞)上的單調(diào)性,并用單調(diào)性定義加以證明;
(3)試求函數(shù)g(x)=$\frac{{x}^{2}-4x-4}{x+1}$(0≤x≤1)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-x3+x2,g(x)=alnx,a∈R.若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案