對于任意的實數(shù)a(a≠0)和b,不等式|a+b|+|a-b|≥|a|k恒成立,則實數(shù)k的最大值是
 
考點:函數(shù)恒成立問題
專題:不等式的解法及應(yīng)用
分析:由題意可得,k≤
|a+b|+|a-b|
|a|
對于任意的實數(shù)a(a≠0)和b恒成立,再由
|a+b|+|a-b|
|a|
的最小值是2,可得,k≤2,由此可得k的值.
解答: 解:不等式|a+b|+|a-b|≥k•|a|恒成立,
k≤
|a+b|+|a-b|
|a|
對于任意的實數(shù)a(a≠0)和b恒成立,
∴k恒小于或等于右邊的最小值.
∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|,
當(dāng)且僅當(dāng)(a-b)(a+b)≥0時等號成立,
即|a|≥|b|時,等號成立,
|a+b|+|a-b|
|a|
的最小值是2,
∴k≤2,即實數(shù)k的最大值是2.
故答案為:2
點評:本題主要考查絕對值的意義,絕對值不等式的解法,函數(shù)的恒成立問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx,sinx),
n
=(cosx,2
3
cosx)
(x∈R),設(shè)函數(shù)f(x)=
m
n
-1.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2已知銳角△ABC的三個內(nèi)角分別為A,B,C,若f(A)=2,B=
π
4
,邊AB=3,求邊BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx-2,若f(2014)=10,則f(-2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)分別為定義在R上的奇函數(shù)和偶函數(shù),且f(x)-g(x)=x2-x+3,則f(1)+g(1)=( 。
A、5B、-5C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若O為坐標(biāo)原點,點A在第三象限,且|OA|=4,∠xOA=210°,則
OA
坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正實數(shù),直線x+y+a=0與圓(x-b)2+(y-1)2=2相切,則
a2
b+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a2+b2+c2+1=2(a+bc),且13sinA=12,則它的三邊長分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中a1=5,a2=2,an=2an-1+3an-2,求{an}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x、y滿足約束條件
x2+y2≤1
x≥0
y≥0
,則z=x+2y的最大值M=
 

查看答案和解析>>

同步練習(xí)冊答案