13.已知函數(shù)f(x)=$\frac{2x-1}{x-1}$.
(1)由y=$\frac{1}{x}$的圖象如何變換可以得到f(x)=$\frac{2x-1}{x-1}$的圖象?
(2)寫出函數(shù)y=f(x)單調(diào)區(qū)間和對(duì)稱中心;
(3)判斷函數(shù)y=f(x)的奇偶性并證明.

分析 (1)根據(jù)分式函數(shù)的性質(zhì),利用分子常數(shù)化進(jìn)行判斷即可.
(2)根據(jù)分式函數(shù)的性質(zhì)進(jìn)行求解判斷
(3)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷.

解答 解:(1)f(x)=$\frac{2x-1}{x-1}$=$\frac{2(x-1)+1}{x-1}$=2+$\frac{1}{x-1}$,
將=$\frac{1}{x}$的圖象,先向右平移一個(gè)單位得到y(tǒng)=$\frac{1}{x-1}$的圖象,然后沿y軸向上平移2個(gè)單位得到f(x)=2+$\frac{1}{x-1}$的圖象.
(2)∵f(x)=2+$\frac{1}{x-1}$,
∴函數(shù)的單調(diào)遞減區(qū)間為(-∞,1),(1,+∞),
函數(shù)的對(duì)稱中心為(1,2).
(1)∵函數(shù)的對(duì)稱中心為(1,2).
∴函數(shù)f(x)為非奇非偶函數(shù).

點(diǎn)評(píng) 本題主要考查分式函數(shù)的性質(zhì),利用分子常數(shù)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若tanα=2,α是第三象限角,則sin(π+α)=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=tan(x+$\frac{π}{4}$)的單調(diào)增區(qū)間為( 。
A.(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$),k∈ZB.(kπ,(k+1)π),k∈Z
C.(kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$),k∈ZD.(kπ-$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平行四邊形ABCD中,已知AB=CD=a,AD=2a,∠DAB=60°,AC∩BD=E,將其沿對(duì)角線BD折成直二面角.
(1)證明:AB⊥平面BCD;
(2)證明:平面ACD⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.麥當(dāng)勞店每天的房租、人員工資等固定成本為200元,某種食品每份的成本價(jià)是5元,銷售單價(jià)與日均銷售量的關(guān)系如下表所示:
銷售單價(jià)/元6789101112
日均銷售量/份440400360320280240200
請(qǐng)你根據(jù)以上數(shù)據(jù)作出分析,該麥當(dāng)勞店怎樣定價(jià)才能獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)設(shè)f(x)的定義域?yàn)镽的函數(shù),求證:F(x)=$\frac{1}{2}$[f(x)+f(-x)]是偶函數(shù);G(x)=$\frac{1}{2}$[f(x)-f(-x)]是奇函數(shù).
(2)利用上述結(jié)論,你能把函數(shù)f(x)=3x3+2x2-x+3表示成一個(gè)偶函數(shù)與一個(gè)奇函數(shù)之和的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知四點(diǎn)A(-1,-5),B(0,-3),C(3,3),D(5,7),試用向量方法判斷A、B、C、D四點(diǎn)是否共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=2sin(2x+φ),φ∈(0,$\frac{π}{2}$)對(duì)任意x有f(x)≤|f($\frac{π}{6}$)|
(1)求f(x)圖象對(duì)稱軸方程和對(duì)稱中心.
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,圓O與x軸的正半軸的交點(diǎn)為A,點(diǎn)C、B在圓O上,且點(diǎn)C位于第一象限,點(diǎn)B的坐標(biāo)為($\frac{12}{13}$,-$\frac{5}{13}$),∠AOC=α,若|BC|=1,則$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值為( 。
A.$\frac{5}{13}$B.$\frac{12}{13}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案