2.如圖,在底半徑為2,母線長為4的圓錐中內(nèi)接一個高為$\sqrt{3}$的圓柱,圓柱的表面積(2+2$\sqrt{3}$)π

分析 由已知中底面半徑為2母線長為4的圓錐中內(nèi)接一個高為$\sqrt{3}$的圓柱,我們可計(jì)算出圓柱的底面半徑,代入圓柱表面積公式,即可得到答案

解答 解:設(shè)圓錐的底面半徑為R,圓柱的底面半徑為r,表面積為S,
作出幾何體的軸截面如下圖所示:

則BC=2,AC=4,AB=$\sqrt{{AC}^{2}-{BC}^{2}}$=2$\sqrt{3}$.
△ABC∽△ADE,
故$\frac{DE}{BC}=\frac{AD}{AB}$,即$\frac{r}{2}=\frac{\sqrt{3}}{2\sqrt{3}}$
∴r=1,
∴S=2π,S側(cè)=2$\sqrt{3}$π,
∴S=(2+2$\sqrt{3}$)π.
故答案為:(2+2$\sqrt{3}$)π

點(diǎn)評 本題考查的知識點(diǎn)是圓柱的表面積,其中根據(jù)已知條件,求出圓柱的底面半徑,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin(ωx+φ)(ω>0且|φ<|$\frac{π}{2}$)在區(qū)間[$\frac{1}{12}$,$\frac{7}{12}$]上單調(diào)遞減,且函數(shù)值從1減小到-1,那么此函數(shù)圖象與y軸交點(diǎn)的縱坐標(biāo)為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x-1}{1+x}$.
(1)求證:函數(shù)f(x)在區(qū)間(-1,+∞)上是增加的;
(2)設(shè)g(x)=f(2x),求證:函數(shù)g(x)是奇函數(shù);
(3)在(2)的前提下,若g(x-1)+g(3-2x)<0,求實(shí)數(shù)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2-2|x|-3,(x∈[-4,4]).
(1)求證:f(x)是偶函數(shù);
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間,并說明在各個單調(diào)區(qū)間上f(x)是單調(diào)遞增還是單調(diào)遞減;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{a}{a-1}$(ax-a-x)(a>0且a≠1).
(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性(單調(diào)性不需證明);
(2)若對于任意x∈R,f(x-λ)+f(x2-λ)>0恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個幾何體的正視圖是長為3、寬為1的矩形,側(cè)視圖是腰長為2的等腰三角形,則該幾何的表面積為12+8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,(-4≤x<0)}\\{-x+3,(x≥0)}\end{array}\right.$,若f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域、值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,若tanA=2tanB,a2-b2=$\frac{1}{3}$c,則c=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,邊a,b,c分別為角A,B,C的對邊,若a=$\sqrt{3}$,∠A=$\frac{π}{3}$,則當(dāng)b取最大值時(shí),△ABC的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案