分析 由tanA=2tanB,可得$\frac{sinA}{cosA}=\frac{2sinB}{cosB}$,利用正弦定理可得:acosB=2bcosA,由余弦定理化簡整理可得:a2-b2=$\frac{1}{3}$c2,結(jié)合a2-b2=$\frac{1}{3}$c,即可解得c的值.
解答 解:∵tanA=2tanB,可得:$\frac{sinA}{cosA}=\frac{2sinB}{cosB}$,利用正弦定理可得:acosB=2bcosA,
∴由余弦定理可得:a×$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=2b×$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,整理可得:a2-b2=$\frac{1}{3}$c2,
又∵a2-b2=$\frac{1}{3}$c,
∴$\frac{1}{3}$c=$\frac{1}{3}$c2,解得:c=1.
故答案為:1.
點評 本題主要考查了同角三角函數(shù)關(guān)系式,正弦定理,余弦定理的綜合應(yīng)用,熟練掌握相關(guān)公式及定理是解題的關(guān)鍵,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<a<1,-1<b<0 | B. | 0<a<1,b<-1 | C. | a>1,b<-1 | D. | a>1,-1<b<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 一條線段 | B. | 橢圓的一部分 | C. | 雙曲線的一部分 | D. | 拋物線的一部分 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com