分析 ( I)由于拋物線x2=2py(p>0)的焦點(diǎn)為$F(0,\frac{p}{2})$.橢圓$\frac{y^2}{4}+\frac{x^2}{3}=1$的焦點(diǎn)為(0,±1),即可得出.
( II)(。┲本與拋物線方程聯(lián)立可得x2-4kx-4=0,△>0,設(shè)A(x1,y1),B(x2,y2),可得根與系數(shù)的關(guān)系.由x2=4y,得$y=\frac{x^2}{4},y'=\frac{x}{2}$,可得:過A的切線PA的方程為:$y=\frac{1}{2}{x_1}x-\frac{1}{4}{x_1}^2$,切線PB的方程為:$y=\frac{1}{2}{x_2}x-\frac{1}{4}{x_2}^2$,可得P(2k,-1).當(dāng)k=0時(shí),P(0,-1),F(xiàn)(0,1),有PF⊥AB.當(dāng)k≠0時(shí),也有PF⊥AB.
(ⅱ)由(。┛稍O(shè)直線PF的方程為:$y=-\frac{1}{k}x+1(k≠0)$.與拋物線方程聯(lián)立可得${x^2}+\frac{4}{k}x-4=0$,設(shè)$C({x_3},\frac{{{x_3}^2}}{4})\;,\;D({x_4},\frac{{{x_4}^2}}{4})$,利用根與系數(shù)的關(guān)系可得:$\overrightarrow{PC}•\overrightarrow{FD}-\overrightarrow{PD}•\overrightarrow{CF}$=0,即可證明.
解答 ( I)解:∵拋物線x2=2py(p>0)的焦點(diǎn)為$F(0,\frac{p}{2})$.
橢圓$\frac{y^2}{4}+\frac{x^2}{3}=1$的焦點(diǎn)為(0,±1),
∴$\frac{p}{2}=1,\;\;p=2$,
∴拋物線的方程為x2=4y.
( II)(。┙猓郝(lián)立$\left\{\begin{array}{l}y=kx+1\\{x^2}=4y\end{array}\right.$,得x2-4kx-4=0,△=16k2+16>0,
設(shè)A(x1,y1),B(x2,y2)
則x1+x2=4k,x1•x2=-4,
由x2=4y,得$y=\frac{x^2}{4},y'=\frac{x}{2}$,
∴過A的切線PA的方程為:$y-{y_1}=\frac{1}{2}{x_1}(x-{x_1})$,
整理得:$y=\frac{1}{2}{x_1}x-\frac{1}{4}{x_1}^2$…①
同理切線PB的方程為:$y=\frac{1}{2}{x_2}x-\frac{1}{4}{x_2}^2$…②
聯(lián)立①②解得${x_P}=\frac{{{x_1}+{x_2}}}{2}=2k\;,\;{y_P}=-1$,即P(2k,-1).
當(dāng)k=0時(shí),P(0,-1),F(xiàn)(0,1),有PF⊥AB.
當(dāng)k≠0時(shí),${k_{PF}}=\frac{1-(-1)}{0-2k}=-\frac{1}{k}$,有PF⊥AB.
∴$\overrightarrow{PF}•\overrightarrow{AB}=0$為定值.
(ⅱ)證明:由(。┛稍O(shè)直線PF的方程為:$y=-\frac{1}{k}x+1(k≠0)$.
由$\left\{\begin{array}{l}y=-\frac{1}{k}x+1\\{x^2}=4y\end{array}\right.$,得${x^2}+\frac{4}{k}x-4=0$,
設(shè)$C({x_3},\frac{{{x_3}^2}}{4})\;,\;D({x_4},\frac{{{x_4}^2}}{4})$
則${x_3}+{x_4}=-\frac{4}{k},{x_3}•{x_4}=-4$,
∵P(2k,-1),F(xiàn)(0,1).
∴$\overrightarrow{PC}•\overrightarrow{FD}-\overrightarrow{PD}•\overrightarrow{CF}$=$({x_3}-2k,\frac{1}{4}{x_3}^2+1)•({x_4},\frac{1}{4}{x_4}^2-1)-({x_4}-2k,\frac{1}{4}{x_4}^2+1)•(-{x_3},1-\frac{1}{4}{x_3}^2)$
=$({x_3}-2k)•{x_4}+(\frac{1}{4}{x_3}^2+1)•(\frac{1}{4}{x_4}^2-1)+({x_4}-2k){x_3}+(\frac{1}{4}{x_4}^2+1)•(\frac{1}{4}{x_3}^2-1)$
=$2{x_3}{x_4}-2k({x_3}+{x_4})+\frac{1}{8}{x_3}^2{x_4}^2-2$=$-8-2k(-\frac{4}{k})+\frac{1}{8}•{(-4)^2}-2$=0
∴$\overrightarrow{PC}•\overrightarrow{FD}=\overrightarrow{PD}•\overrightarrow{CF}$,
又P,C,F(xiàn),D共線,
∴|PC|•|FD|=|PD|•|CF|.
點(diǎn)評(píng) 本題主要考查直線與拋物線、橢圓等基礎(chǔ)知識(shí)及直線與拋物線的位置關(guān)系、向量垂直與數(shù)量積的關(guān)系;考查運(yùn)算求解、抽象概括能力,化歸與轉(zhuǎn)化思想,查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,0) | B. | (0,2) | C. | (1,0) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com