A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 根據(jù)積分的幾何意義求出不等式對應(yīng)區(qū)域的面積,利用幾何概型的概率公式進(jìn)行求解即可.
解答 解:作出不等式對應(yīng)的平面區(qū)域:
則陰影部分的面積S=${∫}_{0}^{1}{x}^{\frac{1}{2}}$dx=$\frac{2}{3}$x${\;}^{\frac{3}{2}}$|${\;}_{0}^{1}$=$\frac{2}{3}$,
則正方形的面積S=1×1=1,
則若任取x,y∈[0,1],則點(diǎn)P(x,y)滿足y≤x${\;}^{\frac{1}{2}}$的概率P=$\frac{\frac{2}{3}}{1}$=$\frac{2}{3}$,
故選:D.
點(diǎn)評 本題主要考查幾何概型的概率計(jì)算,根據(jù)條件結(jié)合積分的幾何意義求出對應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-5)∪(-1,+∞) | B. | (-∞,-5)∪(1,+∞) | C. | (-∞,-1)∪(5,+∞) | D. | (-∞,1)∪(5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽八中高三上學(xué)期月考二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知函數(shù),則下列判斷正確的是( )
A.此函數(shù)的最小正周期為,其圖像的一個(gè)對稱中心是
B.此函數(shù)的最小正周期為,其圖像的一個(gè)對稱中心是
C.此函數(shù)的最小正周期為,其圖像的一個(gè)對稱中心是
D.此函數(shù)的最小正周期為,其圖像的一個(gè)對稱中心是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com