7.已知全集U=R,集合A={x|x>0},B={x|-1<x≤2},求:
(1)A∩B;
(2)A∩∁UB.

分析 (1)直接由交集運算得答案;
(2)求出B的補集,再由交集運算得答案.

解答 解:(1)∵A={x|x>0},B={x|-1<x≤2},
∴A∩B={x|0<x≤2};
(2)∵B={x|-1<x≤2},U=R,
∴∁UB={x|x≤-1或x>2},
∴A∩∁UB={x|x>2}.

點評 本題考查交、并、補集的混合運算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:某班所有的男生都愛踢足球,則命題?p為( 。
A.某班至多有一個男生愛踢足球B.某班至少有一個男生不愛踢足球
C.某班所有的男生都不愛踢足球D.某班所有的女生都愛踢足球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題p:?x∈(-∞,0),2x>3x,則( 。
A.p是假命題,¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$
B.p是假命題¬p:?x∈(-∞,0),2x>3x
C.p是真命題¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$
D.p是真命題¬p:?x∈(-∞,0),2x>3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow a=(sinθ,1)$,$\overrightarrow b=(cosθ,-2)$,θ為第二象限角.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{7}{3}$,求sinθ-cosθ的值;
(2)若$\overrightarrow a$∥$\overrightarrow b$,求$\frac{{3-{{cos}^2}θ}}{{{{sin}^2}θ}}+3tan2θ$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤2\\ 2y-x≥1\end{array}\right.$,z=2y-2x+4的最大值為m,最小值為n,則m+n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f (x) 的部分對應(yīng)值如表所示.數(shù)列{an}滿足a1=1,且對任意n∈N*,點(an,an+1)都在函數(shù)f(x)的圖象上,則a2016的值為( 。
x1234
f(x)3124
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x+$\sqrt{3}$y+2=0的傾角為( 。
A.-$\frac{π}{6}$B.$\frac{5π}{6}$C.-$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=2sin({x-\frac{π}{6}}),x∈R$,若f(x)≥1,則x的取值范圍是(  )
A.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+π,k∈Z}\right\}$B.$\left\{{x|2kπ+\frac{π}{3}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$
C.$\left\{{x|2kπ+\frac{π}{6}≤x≤2kπ+\frac{5π}{6},k∈Z}\right\}$D.$\left\{{x|kπ+\frac{π}{6}≤x≤kπ+\frac{5π}{6},k∈Z}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=x2-2ax+3-2a的兩個零點x1,x2,且在區(qū)間(x1,x2)上恰有兩個正整數(shù),則實數(shù)a的取值范圍為{a|a<-$\frac{7}{2}$,或 a>$\frac{3}{2}$}.

查看答案和解析>>

同步練習(xí)冊答案