A. | 2 | B. | $2\sqrt{2}$ | C. | 3 | D. | 4 |
分析 利用已知條件,判斷三角形PFA是形狀,利用拋物線的性質(zhì)與拋物線方程求出P的坐標,通過兩點間距離公式求解即可.
解答 解:點A(5,0)在x軸上,拋物線C:y2=4x的焦點為F(1,0),
點P在拋物線C上,若點F恰好在PA的垂直平分線上,
可知三角形PFA是等腰三角形,即:|PF|=|AF|,可得|PF|=4,
由拋物線的定義可知,P的橫坐標為:3,縱坐標為:2$\sqrt{3}$.
則PA的長度為:$\sqrt{({5-3)}^{2}+({0-2\sqrt{3})}^{2}}$=4.
故選:D.
點評 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,拋物線的簡單性質(zhì)的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<$\sqrt{ab}$<$\frac{a+b}{2}$ | B. | a<$\sqrt{ab}$<$\frac{a+b}{2}$<b | C. | a<$\sqrt{ab}$<b<$\frac{a+b}{2}$ | D. | $\sqrt{ab}$<a<$\frac{a+b}{2}$<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}\overrightarrow{BE}$+$\frac{1}{6}$$\overrightarrow{DC}$ | B. | $\frac{5}{6}$$\overrightarrow{BE}$+$\frac{1}{3}$$\overrightarrow{DC}$ | C. | $\frac{5}{6}$$\overrightarrow{BE}$$-\frac{1}{6}$$\overrightarrow{DC}$ | D. | $\frac{5}{6}$$\overrightarrow{BE}$$-\frac{1}{3}$$\overrightarrow{DC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{2}{3}$x | B. | y=±$\frac{3}{2}$x | C. | y=±$\frac{9}{4}$x | D. | y=±$\frac{4}{9}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com