設(shè)函數(shù)f(x)=x-xlnx,數(shù)列{an}滿足0<a1<1,an+1=f(an).求證:
(1) 函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);
(2) an<an+1<1.
證明:(1) f(x)=x-xlnx,f′(x)=-lnx,當(dāng)x∈(0,1)時(shí),f′(x)=-lnx>0,故函數(shù)f(x)在區(qū)間(0,1)上是增函數(shù).
(2) (用數(shù)學(xué)歸納法)①當(dāng)n=1時(shí),0<a1<1,a1ln a1<0,a2=f(a1)=a1-a1lna1>a1.
由函數(shù)f(x)在區(qū)間(0,1)是增函數(shù),且f(1)=1,得f(x)在區(qū)間(0,1)是增函數(shù),a2=f(a1)=a1-a1lna1<f(1)=1,即a1<a2<1成立.
②假設(shè)當(dāng)n=k(k∈N*)時(shí),ak<ak+1<1成立,
即0<a1≤ak≤ak+1<1,
那么當(dāng)n=k+1時(shí),由f(x)在區(qū)間(0,1]上是增函數(shù),得0<a1≤ak≤ak+1<1,
得f(ak)<f(ak+1)<f(1),而an+1=f(an),則ak+1=f(ak),ak+2=f(ak+1),即ak+1<ak+2<1,也就是說(shuō)當(dāng)n=k+1時(shí),an<an+1<1也成立.
由①②可得對(duì)任意的正整數(shù)n,an<an+1<1恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,F(xiàn)1、F2分別是雙曲線C:=1(a,b>0)的左、右焦點(diǎn),B是虛軸的端點(diǎn),直線F1B與C的兩條漸近線分別交于P、Q兩點(diǎn),線段PQ的垂直平分線與x軸交于點(diǎn)M.若MF2=F1F2,則C的離心率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時(shí),第一步驗(yàn)證的表達(dá)式為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
閱讀如右圖所示的程序框圖,如果輸入的的值為6,那么運(yùn)行相應(yīng)程序,輸出的的值為
A. 3 B. 5 C. 10 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,一個(gè)幾何體的主視圖與左視圖都是邊長(zhǎng)為2的正方形,
其俯視圖是直徑為2的圓,則該幾何體的表面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com