【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)當(dāng)時,討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.
【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)
【解析】
(Ⅰ)由題意,當(dāng)時,求得,得出函數(shù)的單調(diào)性,進而求解函數(shù)的極值;
(Ⅱ)由,由,得或,分類討論,即可得到函數(shù)的單調(diào)區(qū)間;
(Ⅲ)由(1)和(2),分當(dāng)和,分類討論,分別求得函數(shù)的單調(diào)性和極值,即可得出相應(yīng)的結(jié)論,進而得到結(jié)論.
解:(Ⅰ)當(dāng)時:,令解得,
又因為當(dāng),,函數(shù)為減函數(shù);
當(dāng),,函數(shù)為增函數(shù).
所以,的極小值為.
(Ⅱ).當(dāng)時,由,得或.
(ⅰ)若,則.故在上單調(diào)遞增;
(ⅱ)若,則.故當(dāng)時,;
當(dāng)時,.
所以在,單調(diào)遞增,在單調(diào)遞減.
(ⅲ)若,則.故當(dāng)時,;
當(dāng)時,.
所以在,單調(diào)遞增,在單調(diào)遞減.
(Ⅲ)(1)當(dāng)時,,令,得.
因為當(dāng)時,,當(dāng)時,,
所以此時在區(qū)間上有且只有一個零點.
(2)當(dāng)時:
(ⅰ)當(dāng)時,由(Ⅱ)可知在上單調(diào)遞增,且,,此時在區(qū)間上有且只有一個零點.
(ⅱ)當(dāng)時,由(Ⅱ)的單調(diào)性結(jié)合,又,
只需討論的符號:
當(dāng)時,,在區(qū)間上有且只有一個零點;
當(dāng)時,,函數(shù)在區(qū)間上無零點.
(ⅲ)當(dāng)時,由(Ⅱ)的單調(diào)性結(jié)合,,,此時在區(qū)間上有且只有一個零點.
綜上所述,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動成本萬元,當(dāng)年產(chǎn)量小于萬件時,(萬元);當(dāng)年產(chǎn)量不小于7萬件時,(萬元).已知每件產(chǎn)品售價為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.
(1)寫出年利潤(萬年)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)
(2)當(dāng)年產(chǎn)量約為多少萬件時,該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?
(取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對邊分別為,若,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)已知直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度得到函數(shù)的圖象,有下列叫個結(jié)論:
在單調(diào)遞增; 為奇函數(shù);
的圖象關(guān)于直線對稱; 在的值域為.
其中正確的結(jié)論是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)若函數(shù)的圖象與函數(shù)的圖象相切,求的值;
(2)設(shè)函數(shù),. 若存在,,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準線相交于不同的兩點, ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com