12.已知集合A={x|y=$\sqrt{1-{x}^{2}}$,x∈z},B={p-q|p∈A,q∈A},則B中元素個(gè)數(shù)為( 。
A.1B.3C.5D.7

分析 化簡(jiǎn)集合A={x|y=$\sqrt{1-{x}^{2}}$,x∈z}={-1,0,1},B={p-q|p∈A,q∈A}={-2,-1,0,1,2},從而解得.

解答 解:由題意,A={x|y=$\sqrt{1-{x}^{2}}$,x∈z}={-1,0,1},
B={p-q|p∈A,q∈A}={-2,-1,0,1,2},
故B中元素個(gè)數(shù)為5,
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.二項(xiàng)式(x+y)6的展開式中,含x4y2的項(xiàng)的系數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{{4}^{x}+1}$+a是奇函數(shù),則實(shí)數(shù)a=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+m+≤0}\\{x-2y+2≥0}\end{array}\right.$,則z=2x-y的最大值為3,則m=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)復(fù)數(shù)z1=1-i,z2=$\sqrt{3}$+i,其中i為虛數(shù)單位,則$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虛部為( 。
A.$\frac{1+\sqrt{3}}{4}i$B.$\frac{1+\sqrt{3}}{4}$C.$\frac{\sqrt{3}-1}{4}i$D.$\frac{\sqrt{3}-1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.P是正六邊形ABCDEF某一邊上一點(diǎn),$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AF}$,則x+y的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在數(shù)列{an}中,a1=3,an+1=$\frac{{3}^{n+1}{a}_{n}}{{a}_{n}+{3}^{n}}$
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若a>Tn對(duì)任意n∈N+恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在報(bào)名的3名男老師和6名女教師中,選取5人參加義務(wù)獻(xiàn)血,要求男、女教師都有,則不同的選取方式的種數(shù)為120(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)過點(diǎn)P(-1,-1),c為橢圓的半焦距,且c=$\sqrt{2}$b.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P作兩條相互垂直的直線l1,l2與橢圓C分別交于另兩點(diǎn)M,N,若線段MN的中點(diǎn)在x軸上,求此時(shí)直線MN的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案