7.設(shè)復(fù)數(shù)z1=1-i,z2=$\sqrt{3}$+i,其中i為虛數(shù)單位,則$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虛部為( 。
A.$\frac{1+\sqrt{3}}{4}i$B.$\frac{1+\sqrt{3}}{4}$C.$\frac{\sqrt{3}-1}{4}i$D.$\frac{\sqrt{3}-1}{4}$

分析 由題意結(jié)合復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵z1=1-i,z2=$\sqrt{3}$+i,
∴$\frac{\overline{{z}_{1}}}{{z}_{2}}=\frac{1+i}{\sqrt{3}+i}=\frac{(1+i)(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)}$=$\frac{\sqrt{3}+1}{4}+\frac{\sqrt{3}-1}{4}i$.
∴$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虛部為$\frac{\sqrt{3}-1}{4}$.
故選:D.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\frac{a+3i}{i}$=b+i(a,b∈R,i為虛數(shù)單位),則a+b等于( 。
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若向量$\overrightarrow{a}$=(2,x+1),$\overrightarrow$=(x+2,6),又$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角,則實數(shù)x的取值范圍為( 。
A.{x|x>-$\frac{5}{4}$且x≠2}B.{x|x>-$\frac{5}{4}$}C.{x|x<-$\frac{5}{4}$且x≠-5}D.{x|x<-$\frac{5}{4}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在等邊三角形ABC中,P在線段AB上,且$\overrightarrow{AP}=λ\overrightarrow{AB}$,其中0<λ<1,若$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PC}•\overrightarrow{AB}$=0,則λ的值為$\frac{{2-\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.閱讀如圖的程序框圖,當(dāng)程序運行后,輸出S的值為( 。
A.57B.119C.120D.247

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|y=$\sqrt{1-{x}^{2}}$,x∈z},B={p-q|p∈A,q∈A},則B中元素個數(shù)為( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{f(x-1)+1(x>0)}\end{array}\right.$,g(x)=f(x)-x,把函數(shù)g(x)的零點按從小到大的順序排列成一個數(shù)列,則該數(shù)的前n項和為(  )
A.Sn=$\frac{n(n-1)}{2}$B.Sn=$\frac{n(n+1)}{2}$C.Sn=2n-1D.Sn=2n-1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在如圖所示的幾何體ABCDEFG中,四邊形ABCD是邊長為4的正方形,DE⊥平面ABCD,DE∥AF∥BG,H是DE的中點,AC與BD相交于N,DE=2AF=2BG=4
(Ⅰ)在FH上求一點P,使NP∥平面EFC;
(Ⅱ)求二面角E-FC-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知正四棱柱ABCD-A1B1C1D1的底面邊長AB=6,側(cè)棱長AA1=2$\sqrt{7}$,它的外接球的球心為O,點E是AB的中點,點P是球O上任意一點,有以下判斷:
①PE的長的最大值是為9;
②三棱錐P-EBC的體積的最大值是$\frac{32}{3}$;
③三棱錐P-AEC1的體積的最大值是20;
④過點E的平面截球O所得截面面積最大時,B1C垂直于該截面,
其中正確的命題是①③( 把你認為正確的都寫上 ).

查看答案和解析>>

同步練習(xí)冊答案