17.已知全集U=R,A={x|x+2≥0},B={x|x>3},利用數(shù)軸求:
(1)A∩B和A∪B;
(2)∁U(A∩B)和A∪(∁UB)

分析 (1)求出A中不等式的解集確定出A,找出A與B的交集,并集即可;
(2)求出A與B交集的補角,找出A與B補集的并集即可.

解答 解:(1)由A中不等式解得:x≥-2,即A={x|x≥-2},
∵B={x|x>3},
∴A∩B={x|x>3},A∪B={x|x≥-2};
(2)∵U=R,A∩B={x|x>3},B={x|x>3},
∴∁U(A∩B)={x|x≤3},∁UB={x|x≤3},
則A∪(∁UB)={x|-2≤x≤3}.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)拋物線C:x2=2py(p>0)的準(zhǔn)線被圓O:x2+y2=4所截得的弦長為$\sqrt{15}$,
(1)求拋物線C的方程; 
(2)設(shè)點F是拋物線C的焦點,N為拋物線C上的一動點,過N作拋物線C的切線交圓O于P、Q兩點,求△FPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在區(qū)間(0,$\frac{π}{2}$)上隨機取一個數(shù)x,使得0<tanx<1成立的概率等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,將函數(shù)f(x)的圖象向左平移m(m>0)個單位后,得到函數(shù)g(x)的圖象關(guān)于點($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)對稱,則m的值可能為( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{7π}{6}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若a=0時,求函數(shù)y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知$\frac{{a}^{2}sinB}{cosB}$=$\frac{^{2}sinA}{cosA}$,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若a>0,b>0,lga+lgb=lg(a+b),則a+b的最小值為(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a3=( 。
A.-10B.-6C.-8D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)定義域為D,若存在非零實數(shù)t,使得對任意x∈M(M⊆D),都有x+t∈M,且f(x+t)≥f(x)成立,則稱f(x)為M上的“t頻函數(shù)”.若f(x)=2x2為區(qū)間$[-\frac{1}{2},+∞)$上的“t頻函數(shù)”,則t的取值范圍是[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案