4.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρsin($θ-\frac{π}{6}$)=0,且曲線C1與曲線C2在第一象限的交點(diǎn)為A,長(zhǎng)方形ABCD的頂點(diǎn)都在C1上(其中A、B、C、D依次逆時(shí)針次序排列)求A、B、C、D的直角坐標(biāo).

分析 由曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ為參數(shù)),利用cos2φ+sin2φ=1即可化為直角坐標(biāo)方程,曲線C2的極坐標(biāo)方程是ρsin($θ-\frac{π}{6}$)=0,化為$\frac{\sqrt{3}}{2}ρsinθ-\frac{1}{2}ρcosθ$=0,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出直角坐標(biāo)方程,聯(lián)立解出即可得出.

解答 解:由曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ為參數(shù)),化為直角坐標(biāo)方程:$\frac{{x}^{2}}{25}$+$\frac{22{y}^{2}}{25}$=1,
曲線C2的極坐標(biāo)方程是ρsin($θ-\frac{π}{6}$)=0,化為$\frac{\sqrt{3}}{2}ρsinθ-\frac{1}{2}ρcosθ$=0,可得:$\sqrt{3}$y-x=0.
聯(lián)立$\left\{\begin{array}{l}{x-\sqrt{3}y=0}\\{{x}^{2}+22{y}^{2}=25}\end{array}\right.$,交點(diǎn)$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=-1}\end{array}\right.$,
取點(diǎn)A$(\sqrt{3},1)$.
由題意可得:B$(-\sqrt{3},1)$,C$(-\sqrt{3},-1)$,D$(\sqrt{3},-1)$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、直線與橢圓的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)為奇函數(shù),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,方程f(x)=a(0<a<1)的所有實(shí)數(shù)根之和為( 。
A.1-2aB.2a-1C.($\frac{1}{2}$)a-1D.1-($\frac{1}{2}$)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,△ABC三個(gè)頂點(diǎn)都在拋物線上,且△ABC的重心為拋物線的焦點(diǎn),若BC邊所在直線的方程為4x+y-20=0,則拋物線方程為y2=16x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.等差數(shù)列{an}滿足a1+a9=8,則a4+a5+a6=( 。
A.16B.14C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=bcosC+$\frac{\sqrt{3}}{3}$csinB.
(1)求B的大;
(2)求sin2A+sin2C的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x+1)=f(x-1),當(dāng)x∈[0,1]時(shí),f(x)=2x-1,則函數(shù)g(x)=f(x)-ln$\frac{x}{2}$的零點(diǎn)個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥a}\\{y≥x}\\{x+y≤2}\end{array}\right.$(a<1),且z=2x+y的最大值是最小值的4倍,則a的值是( 。
A.$\frac{2}{11}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.為得到函數(shù)$y=2sin(2x+\frac{π}{4})$的圖象,只需將函數(shù)y=2cos2x的圖象( 。
A.向左平移$\frac{π}{4}$單位B.向右平移$\frac{π}{4}$單位C.向左平移$\frac{π}{8}$單位D.向右平移$\frac{π}{8}$單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若集合M={x|1<x<4},N={x|x2-7x<0},則M∩N等于(  )
A.{x|0<x<4}B.{x|1<x<7}C.{x|1<x<4}D.{x|4<x<7}

查看答案和解析>>

同步練習(xí)冊(cè)答案