分析 由曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ為參數(shù)),利用cos2φ+sin2φ=1即可化為直角坐標(biāo)方程,曲線C2的極坐標(biāo)方程是ρsin($θ-\frac{π}{6}$)=0,化為$\frac{\sqrt{3}}{2}ρsinθ-\frac{1}{2}ρcosθ$=0,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出直角坐標(biāo)方程,聯(lián)立解出即可得出.
解答 解:由曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ為參數(shù)),化為直角坐標(biāo)方程:$\frac{{x}^{2}}{25}$+$\frac{22{y}^{2}}{25}$=1,
曲線C2的極坐標(biāo)方程是ρsin($θ-\frac{π}{6}$)=0,化為$\frac{\sqrt{3}}{2}ρsinθ-\frac{1}{2}ρcosθ$=0,可得:$\sqrt{3}$y-x=0.
聯(lián)立$\left\{\begin{array}{l}{x-\sqrt{3}y=0}\\{{x}^{2}+22{y}^{2}=25}\end{array}\right.$,交點(diǎn)$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=-1}\end{array}\right.$,
取點(diǎn)A$(\sqrt{3},1)$.
由題意可得:B$(-\sqrt{3},1)$,C$(-\sqrt{3},-1)$,D$(\sqrt{3},-1)$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、直線與橢圓的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-2a | B. | 2a-1 | C. | ($\frac{1}{2}$)a-1 | D. | 1-($\frac{1}{2}$)a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{11}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$單位 | B. | 向右平移$\frac{π}{4}$單位 | C. | 向左平移$\frac{π}{8}$單位 | D. | 向右平移$\frac{π}{8}$單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0<x<4} | B. | {x|1<x<7} | C. | {x|1<x<4} | D. | {x|4<x<7} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com