分析 (1)由已知得PA⊥AB,PA⊥AD,從而BD⊥PA,由四邊形ABCD是菱形,得AC⊥BD,由此能證明BD⊥平面PAC.
(2)由四邊形ABCD是梯形,且平面PAB∩平面PCD=l,得CD與AB有交點(diǎn)P,從而直線l∩平面ABCD=P,由此得到直線l不能與平面ABCD平行.
解答 證明:(1)∵在四棱錐P-ABCD中,平面四邊形ABCD中AD∥BC,∠BAD為二面角B-PA-D一個(gè)平面角,
∴PA⊥AB,PA⊥AD,
又AB∩AD=A,∴PA⊥平面ABCD,
∵BD⊥PA,
∵四邊形ABCD是菱形,∴AC⊥BD,
∵AC∩PA=A,∴BD⊥平面PAC.
解:(2)直線l不能與平面ABCD平行.
理由如下:
∵四邊形ABCD是梯形,且平面PAB∩平面PCD=l,
∴CD與AB有交點(diǎn)P,∴P∈l,
∴直線l∩平面ABCD=P,
∴直線l不能與平面ABCD平行.
點(diǎn)評(píng) 本題考查線面垂直的證明,考查直線與平面是否平行的判斷與證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a1+a3≥2a2 | B. | a1+a3≤2a2 | C. | a1S3>0 | D. | a1S3<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{97}{100}$ | B. | $\frac{99}{100}$ | C. | $\frac{100}{101}$ | D. | $\frac{102}{101}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com