18.在數(shù)列{an}中,a1=3,an=2an-1+(n-2)(n≥2,n∈N*)
(1)求證:數(shù)列{an+n}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的與前n項(xiàng)和Sn

分析 (1)a1=3,an=2an-1+(n-2)(n≥2,n∈N*).變形為an+n=2(an-1+n-1),再利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 (1)證明:∵a1=3,an=2an-1+(n-2)(n≥2,n∈N*)
∴an+n=2(an-1+n-1),
∴數(shù)列{an+n}是等比數(shù)列,首項(xiàng)為4,公比為2.
∴an=4×2n-1-n=2n+1-n.
(2)解:數(shù)列{an}的與前n項(xiàng)和Sn=(22+23+…+2n+1)-(1+2+…+n)
=$\frac{4({2}^{n}-1)}{2-1}$-$\frac{n(1+n)}{2}$
=2n+2-4-$\frac{{n}^{2}+n}{2}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某校有老師200名,男生1200名,女生1000名,現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為240的樣本,則從男生中抽取的人數(shù)為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若角α的終邊過(guò)點(diǎn)(-1,2),則sin(π-2α)•cos(π-2α)的值為(  )
A.-$\frac{12}{25}$B.$\frac{12}{25}$C.$\frac{\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等差數(shù)列{an},
(1)若a1=$\frac{5}{6}$,an=-$\frac{3}{2}$,Sn=-5,求n和d;
(2)若a1=4,S8=172,求a8和d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求由曲線y=2-x2,直線y=x及x軸所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn
已知對(duì)任意n∈N,Sn是an2和an的等差中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)令cn=$\frac{1}{{a}_{n+1}^{2}-1}$,求{cn}的前n項(xiàng)和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等比數(shù)列{an}的公比為q=-$\frac{1}{2}$.
(1)若a4=$\frac{1}{8}$,求數(shù)列{an}的前n項(xiàng)和;
(2)證明:對(duì)任意k∈N*,ak+2是ak與ak+1的等差中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知直線l1:ax-y+1=0,l2:x+y+1=0,l1∥l2,則a的值為-1,直線l1與l2間的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在四棱錐P-ABCD中,平面四邊形ABCD中AD∥BC,∠BAD為二面角B-PA-D一個(gè)平面角.
(1)若四邊形ABCD是菱形,求證:BD⊥平面PAC;
(2)若四邊形ABCD是梯形,且平面PAB∩平面PCD=l,問(wèn):直線l能否與平面ABCD平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案