11.已知向量$\overrightarrow{m}$=(1,cosθ),$\overrightarrow{n}$=(sinθ,-2),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,則sin2θ+6cos2θ的值為( 。
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.-2

分析 由題意可得tanθ=2,而sin2θ+6cos2θ=$\frac{2sinθcosθ+6co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$,分子分母同除以cos2θ,代入tanθ=2可得答案.

解答 解:由題意可得向量$\overrightarrow{m}$=(1,cosθ),$\overrightarrow{n}$=(sinθ,-2),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,即tanθ=2,
所以sin2θ+6cos2θ=$\frac{2sinθcosθ+6co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ+6}{ta{n}^{2}θ+1}$=$\frac{2×2+6}{4+1}$=2.
故選:B.

點(diǎn)評 本題考查三角函數(shù)的運(yùn)算,把函數(shù)化為正切函數(shù)是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an},
(1)若a1=$\frac{5}{6}$,an=-$\frac{3}{2}$,Sn=-5,求n和d;
(2)若a1=4,S8=172,求a8和d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l1:ax-y+1=0,l2:x+y+1=0,l1∥l2,則a的值為-1,直線l1與l2間的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,$-\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(文科)四棱鏡P-ABCD中,PD⊥平面ABCD,2AD=AB=BC=2a,AD∥BC,PD=$\sqrt{3}$a,∠DAB=60°,Q是PB的中點(diǎn).
(Ⅰ)若平面PAD∩平面PBC=l,求證:l∥BC;
(Ⅱ)求證:DQ⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在三棱錐D-ABC中,已知AB=AD=2,BC=1,$\overrightarrow{AC}•\overrightarrow{BD}=-3$,則CD=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐P-ABCD中,平面四邊形ABCD中AD∥BC,∠BAD為二面角B-PA-D一個平面角.
(1)若四邊形ABCD是菱形,求證:BD⊥平面PAC;
(2)若四邊形ABCD是梯形,且平面PAB∩平面PCD=l,問:直線l能否與平面ABCD平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x,y滿足$\left\{\begin{array}{l}{(x-y)(x+y-1)≥0}\\{0≤x≤1}\end{array}\right.$,則2x+y的取值范圍為[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin2x+cos2x
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及f(x)取最大值時x的集合.

查看答案和解析>>

同步練習(xí)冊答案