14.已知函數(shù)f(x)=cos2x+2$\sqrt{3}$sinxcosx-sin2x,x∈R.
(1)求f(x)的最小正周期和值域;
(2)△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若f($\frac{A}{2}$)=2且asinA=bsinC,試判斷△ABC的形狀.

分析 (1)由三角函數(shù)公式化簡可得f(x)=2sin(2x+$\frac{π}{6}$),易得周期和值域;
(2)由(1)和三角形的內(nèi)角范圍可得A=$\frac{π}{3}$,由正余弦定理可得b=c,可判三角形形狀.

解答 解:(1)化簡可得f(x)=cos2x+2$\sqrt{3}$sinxcosx-sin2x
=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,函數(shù)的值域?yàn)閇-2,2];
(2)∵f($\frac{A}{2}$)=2sin(A+$\frac{π}{6}$)=2,∴sin(A+$\frac{π}{6}$)=1.
∵0<A<π,∴A+$\frac{π}{6}$=$\frac{π}{2}$,∴A=$\frac{π}{3}$.
由asinA=bsinC和正弦定理可得a2=bc,
再由余弦定理可得a2=b2+c2-2bccosA,
∴(b-c)2=0,∴b=c,∴B=C=$\frac{π}{3}$.
∴△ABC為等邊三角形.

點(diǎn)評(píng) 本題考查正余弦定理解三角形,涉及三角函數(shù)公式和三角函數(shù)的性質(zhì),屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若角α的終邊過點(diǎn)(-1,2),則sin(π-2α)•cos(π-2α)的值為(  )
A.-$\frac{12}{25}$B.$\frac{12}{25}$C.$\frac{\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的公比為q=-$\frac{1}{2}$.
(1)若a4=$\frac{1}{8}$,求數(shù)列{an}的前n項(xiàng)和;
(2)證明:對(duì)任意k∈N*,ak+2是ak與ak+1的等差中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l1:ax-y+1=0,l2:x+y+1=0,l1∥l2,則a的值為-1,直線l1與l2間的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在平面四邊形ABCD中,AB=1,$BC=\sqrt{3}+1$,$AD=\sqrt{6}$,∠ABC=120°,∠DAB=75°,則CD=( 。
A.$\sqrt{3}$B.$2\sqrt{2}$C.$2\sqrt{3}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對(duì)于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,$-\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(文科)四棱鏡P-ABCD中,PD⊥平面ABCD,2AD=AB=BC=2a,AD∥BC,PD=$\sqrt{3}$a,∠DAB=60°,Q是PB的中點(diǎn).
(Ⅰ)若平面PAD∩平面PBC=l,求證:l∥BC;
(Ⅱ)求證:DQ⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐P-ABCD中,平面四邊形ABCD中AD∥BC,∠BAD為二面角B-PA-D一個(gè)平面角.
(1)若四邊形ABCD是菱形,求證:BD⊥平面PAC;
(2)若四邊形ABCD是梯形,且平面PAB∩平面PCD=l,問:直線l能否與平面ABCD平行?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四條直線,傾斜角最大的是( 。
A.y=-x+1B.y=x+1C.y=2x+1D.x=1

查看答案和解析>>

同步練習(xí)冊(cè)答案