16.焦點(diǎn)是F(0,1)的拋物線的標(biāo)準(zhǔn)方程是(  )
A.x2=4yB.y2=4xC.x2=-4yD.y2=-4x

分析 焦點(diǎn)是F(0,1)的拋物線滿足的標(biāo)準(zhǔn)形式是x2=2py(p>0),且$\frac{p}{2}=1$,由此能求出結(jié)果.

解答 解:焦點(diǎn)是F(0,1)的拋物線的標(biāo)準(zhǔn)方程是x2=4y.
故選:A.

點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意拋物線性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={n^2}-4n$,則a2-a1=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若$\frac{sinA}{a}=\frac{\sqrt{3}cosC}{c}$,則∠C=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=f(x),f(x)=sinπx+2|sinπx|,x∈[0,2],函數(shù)g(x)=f(x)-loga(x+$\frac{3}{2}$),若以g(x)=0在區(qū)間[-1,3]上至少6個(gè)根,則a的取值范圍為( 。
A.[${4}^{\frac{1}{3}}$,+∞)B.[${4}^{\frac{1}{3}}$,6]C.[4,+∞)D.[3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一塊邊長為8cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角加工成一個(gè)正四棱錐(底面是正方形,從頂點(diǎn)向底面作垂線,垂足為底面中心的四棱錐)形容器,O為底面ABCD的中心,E為棱SA的中點(diǎn),則DE與SC所成角的正切值為$\frac{6\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別是棱BB1、CC1的中點(diǎn),AC與BD交于點(diǎn)O.
(1)求證:OE⊥平面ACD1
(2)求異面直線OE與BF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)集M={a1,a2,…,an}(0≤a1<a2<…<an,n≥2)具有性質(zhì)P:對(duì)任意的i,j(1≤i≤j≤n),ai+aj與aj-ai兩數(shù)中至少有一個(gè)屬于M.
(Ⅰ)分別判斷數(shù)集{0,1,3}與{0,2,3,5}是否具有性質(zhì)P,并說明理由;
(Ⅱ)證明:a1=0,且an=$\frac{2}{n}({a_1}+{a_2}+…+{a_{n-1}}+{a_n})$;
(Ⅲ)當(dāng)n=5時(shí),證明:a1,a2,a3,a4,a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.記等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=2a3,S5=15,則a2016=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在函數(shù)y=xcosx,y=ex+x2,$y=lg\sqrt{{x^2}-2}$,y=xsinx偶函數(shù)的個(gè)數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案