分析 (1)設(shè)圓心坐標(biāo)為(a,-a-2),利用圓過點(diǎn)P(-2,2)和原點(diǎn)O,求出a,即可求圓C的方程;
(2)利用圓的對稱性,直接求出直線的斜率,寫出直線方程即可.
解答 解:(1)設(shè)圓心坐標(biāo)為(a,-a-2),則r2=(a+2)2+(-a-2-2)2=a2+(-a-2)2,
∴a=-2,r2=52,
∴圓C的方程為(x+2)2+y2=4;
(2)設(shè)圓C的圓心為C,l1、l2 被圓C所截得弦長相等,
由圓的對稱性可知,直線l1的斜率k=±1,
∴直線l1的方程為:x-y+1=0或x+y+1=0.
點(diǎn)評 本題考查圓的標(biāo)準(zhǔn)方程的求法、直線和圓位置關(guān)系的綜合應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 35 | C. | 34 | D. | 33 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜好體育運(yùn)動 | 不喜好體育運(yùn)動 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -60 | B. | 70 | C. | -10 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com