2.已知實數(shù)x,y,z滿足x+y+z=0,x2+y2+z2=1,則x的最大值為$\frac{\sqrt{6}}{3}$.

分析 利用x+y+z=0,得z=-x-y,將其代入x2+y2+z2=1,得到2y2+2xy+(2x2-1)=0,由此利用根的判別式能求出x的最大值.

解答 解:∵x+y+z=0,∴z=-x-y,
∵x2+y2+z2=1,∴x2+y2+x2+2xy+y2=1,
∴2y2+2xy+(2x2-1)=0,
∴△=4x2-16x2+8≥0,
解得-$\frac{\sqrt{6}}{3}≤x≤\frac{\sqrt{6}}{3}$,
∴x的最大值為$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{\sqrt{6}}{3}$.

點評 本題主要考查函數(shù)的最值的求法,解題時要認(rèn)真審題,注意消元思想和不等式性質(zhì)的合理運用,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.135(8)=1011101(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2≥1},$B=\{x|\frac{x-2}{x}≤0\}$,則A∩(∁RB)=( 。
A.(2,+∞)B.(-∞,-1]∪(2,+∞)C.(-∞,-1)∪(2,+∞)D.[-1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)是偶函數(shù)的是( 。
A.y=xB.y=2x2C.y=x${\;}^{-\frac{1}{2}}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的兩個焦點分別為F1,F(xiàn)2,點P在橢圓上,若△PF1F2為直角三角形,則點P到x軸的距離為$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.${0.01^{-\frac{1}{2}}}-{(-\frac{5}{4})^0}+{7^{{{log}_7}}}^2+[{{{(lg2)}^2}+lg2•lg5+lg5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線nx+my+3m=0被圓x2+y2=r2(r>0)截得的最短弦長為8,則r=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題p:“$\frac{x^2}{2m-1}+\frac{y^2}{2-m}=1$是橢圓的標(biāo)準(zhǔn)方程”,命題q:“$\frac{x^2}{m-1}+\frac{y^2}{m-3}=1$是雙曲線的標(biāo)準(zhǔn)方程”.且p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=3${\;}^{-{x}^{2}+ax+2}$.
(1)若函數(shù)f(x)為偶函數(shù),求實數(shù)a的值;
(2)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間,并求出其值域.

查看答案和解析>>

同步練習(xí)冊答案