16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,4),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow$(λ∈R),當(dāng)λ為何值時,$\overrightarrow{c}$與$\overrightarrow{a}$的夾角為45°?

分析 利用夾角公式求出夾角余弦,列出方程解出.

解答 解:$\overrightarrow{c}$=(1-3λ,2+4λ),∴$\overrightarrow{a}•\overrightarrow{c}$=1-3λ+2(2+4λ)=5λ+5.|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow{c}$|=$\sqrt{(1-3λ)^{2}+(2+4λ)^{2}}$=$\sqrt{25{λ}^{2}+10λ+5}$.
∴cos45°=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{5λ+5}{\sqrt{5}•\sqrt{25{λ}^{2}+10λ+5}}$=$\frac{\sqrt{2}}{2}$.解得λ=1,或λ=-$\frac{1}{3}$.

點評 本題考查了平面向量的數(shù)量積運算與夾角公式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在空間中,已知動點P(x,y,z)滿足z=0,則動點P的軌跡是(  )
A.平面B.直線
C.不是平面,也不是直線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinx•cosx.
(1)當(dāng)x∈[0,$\frac{π}{2}$]時,求f(x)的值域;
(2)用五點法在圖中作出y=f(x)在閉區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的簡圖;
(3)說明f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)A(x1,a)、B(x2,a)是周期為2π的函數(shù)y=sin(ωx-$\frac{π}{3}$)(ω>0)圖象上兩點,且滿足0<x1<x2<2π,0<a<1,則x1+x2=( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知空間向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow{p}$,若存在實數(shù)組(x1,y1,z1)和(x2,y2,z2),滿足$\overrightarrow{p}$=x1$\overrightarrow{a}$+y1$\overrightarrow$+z1$\overrightarrow{c}$,$\overrightarrow{p}$=x2$\overrightarrow{a}$+y2$\overrightarrow$+z2$\overrightarrow{c}$,且x1≠x2.試證明向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知動點P的坐標(biāo)(x,y)滿足$\frac{\sqrt{(x-1)^{2}+(y-1)^{2}}}{\frac{|x+y+2|}{\sqrt{2}}}$=$\frac{1}{2}$,則動點P的軌跡是橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)數(shù)列{an}滿足an+1=$\frac{4{a}_{n}-1}{{a}_{n}+2}$,當(dāng)首項a1=$\frac{7}{10}$時,此數(shù)列只有10項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個命題中,真命題的個數(shù)是
( 。俟簿向量的方向一定相同②零向量與任何非零向量共線③單位向量的模一定相等④相反向量的模一定相等.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若曲線f(x)=ax3-bx+4在x=1處的切線方程為9x+3y-10=0.
(1)求函數(shù)f(x)的解析式;
(2)(理)若方程f(x)=k有3個實數(shù)解,求實數(shù)k的取值范圍.
(文)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案